都在圆O上AE是圆O的直径AD是三角形ABC的边角C=70求角BAE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:18:15
如图,已知AE是圆心O的直径,三角形ABC的三个顶点都在圆心O上,延长高AD交圆心O于F,连接BE,CF求证BE=CF

两个错误:1,“三角形ABC的三个顶点都在圆心O上”应说“……都在圆O上”.2,“高AD交圆心O于F,”应说“……交圆O于F,”.证明:连结EF,AE是直径,角AFE是直角,又因AD垂直于BC,所以B

如图,三角形ABC的三个顶点都在圆o上,AD垂直于D,AE是圆o的直径,求证:AB*CD =AE*AD(*为乘以)

证明:在圆中AE为直径那么∠ACE=90度因为AD垂直BC所以∠ADB=90度所以∠ACE=ADB因为∠B和∠D都是弧AC所对的圆周角所以∠B=∠D因为∠ADB=∠ACE所以△ADB∽△ACE所以AD

ab为圆o的直径,pb切圆o于b,d在圆o上,ad‖po,求证:pd是圆o的切线

证明;连接OD∵OA=OD∴∠OAD=∠ODA∵AD//PO∴∠OAD=∠BOP【同位角】∠ODA=∠DOP【内错角】∴∠BOP=∠DOP又∵OB=OD,OP=Op∴⊿BOP≌⊿DOP(SAS)∴∠P

AD是三角形ABC的边BC上的高,AE是圆O的直径,求证:1,三角形ADB~三角形ACE;2,AB*AC=AD*AE.

证:AE为直径→∠ACE=∠ADB=90°∠E和∠B为同弧所对圆周角→∠E=∠B→△ADB∽△ACE→AB/AD=AE/AC→AB*AC=AD*AE证毕!

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,C为圆O上一点,且AC平分角PAE 若AD:DC=1:3 求圆O

半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2

如图以知三角形abc的三个顶点在圆o上ad是三角形abc的高ae是圆o的直径求证ab?ac=ad•

证明:因为AE是圆O的直径所以角ABE=90度因为AD是三角形ABC的高所以角ADC=90度所以角ABE=角ADC=90度因为角AEB=角ACD=1/2弧AB所以三角形ABE和三角形ADC相似(AA)

已知三角形ABC的三个顶点都在圆o上,AE是圆o的直径.求证:AB·AC=AE·AD

给好评马上发答案再问:。。。再答:再问:字不错!再问:谢啦!再答:谢谢好评。

如图,三角形ABC的三个顶点在圆O上,AD是三角形ABC的高,AE是圆O的直径.试说明:角1=角2

因为园内等弧对等角,所以角BEA=角BCA角1=90°-角BEA角2=90°-角BCA所以角1=角2

AE是圆O的直径,AD⊥BC,求证:AD·AE=AB·AC

证明:AE为直径所以∠ABE=90度因为AD垂直BC所以∠ADC=90度因为∠ABE=∠ADC,∠E=∠C(都是弧AB对的圆周角)所以△ABE∽△ADC所以AB/AD=AE/AC所以AB*AC=AE*

图,三角形ABC的顶点A,B,C都在圆O上,AE是圆O的直径,AD是三角形ABC的边BC上的高,角C=70度,求角BAE

连接EC,角ACE就等于90度,根据已知角C=70度,故角BCE=30度,角BAE=角BCE=30度

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

如图,三角形ABC的三个顶点在圆O上,AD是三角形ABC的高,AE是圆O的直径,求证:∠1=∠2

证明:∵AE是△ABC的外接圆直径,∴∠ABE=90°.∴∠1+∠E=90°.∵AD是△ABC的高,∴∠ADC=90°.∴∠2+∠ACB=90°.∵∠E=∠ACB,∴∠1=∠2.

圆专题:三角形ABC的三个顶点在圆O上,AD是BC边上的高,AE是圆O的直径,若圆O的半径是10,AB=8,AC=6,求

角C与角E为等弧上的圆周角,所以角C=角E,又因为角ABE=90度(直径所能的角为圆周角)所以三角形ABE相似于三角形ACD,6:20=AD:8AD=2.4,

三角形abc的顶点A B C 都在圆O上,AE是圆O的直径,AD是三角形abc的边BC上的高

连接EC,则:角ACE=90度=角ADB角B=角E所以:三角形ADB相似于三角形ACEAB/AE=AD/ACAB*AC=AE*AD

=如图,已知△abc的三个顶点在以o为圆心的圆上,ad是△abc的高,ae是以o为圆心的圆上直径,求证ab×ac=ad×

连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

点D是圆O的直径CA延长线上一点,点B在圆O上,且AB=AD=AO 若E是狐BC上一点,AE与BC相交于点F,△BEF的

因为AC是直径所以∠ABC=90度所以cos∠BFA=BF/AF所以BF/AF=2/3因为∠C=∠F.∠AFC=∠BFE所以△AFC∽△BFE所以S△BEF/S△ACF=4/9因为S△BEF=8所以S

三角形内接与圆O,AB是圆O直径,点D在圆O上,过点C的切线交AD的延长线与点E,且AE垂直于CE,连接CD

证明:(1)、连接OC∵CE是圆O切线∴OC⊥CE∵AE⊥CE∴OC‖AE∴∠OCA=∠EAC∵OA=OB∴∠OCA=∠OAC∴∠EAC=∠OAC即AC平分角BAE(2)、∵∠EAC=∠OAC∴弧CD

三角形内接与圆O,AB是圆O直径,点D在圆O上,过点C的切线交AD的延长线与点E,且AE垂直于CE,连接CD 若AB=5

∠EDC=∠ABC(圆内接四边形外角等于内对角);∠DEC=∠ACB=90度所以△DEC∽△BCADE/EC=BC/CA=3/4

如图,A,B,E,C四点都在圆O上,AD是△ABC的高,∠CAD=∠EAB,AE是圆O的直径吗?为什么.

连接BE因为∠AEB和∠ACB均指向圆弧AB所以∠AEB=∠ACB即△ACD相似于△ABE而∠ADC=90度,所以∠ABE=90度即∠ABE对应的弧度为180度,AE为圆的直径再问:我们没有学相似阿。