随机变量X-N(-1,3的平方)Y-N(2,4的平方),且xy相互独立,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:07:09
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
∫(-∞,+∞)f(x)dt=∫[1,2]Ax^2dx+∫[2,3]Axdx=A/3*x^3[1,2]+A/2x^2[2,3]=7/3A+5/2A=1A=6/29F(x)=∫(-∞,x)f(t)dt=
X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:
首先,设c为常数,则E(c)=c,D(c)=0.然后要知道X~N(-3,1)的意思是X服从期望为-3,方差为1的正态分布,即E(X)=-3,D(X)=1.同理,E(Y)=2,D(Y)=4.所以:E(Z
E(X)=0,D(X)=E(X^2)=1,E(X^3)=0E(X^4)=3E(Y)=2*E(X^2)+E(X)+3=5E(XY)=2*E(X^3)+E(X^2)+3*E(X)=1E(Y^2)=4*E(
你这个问题怎么提了2次啊,我都给你回答了啊X,Y均服从正态分布,Z也服从正态分布E(Z)=E(X-2Y+7)=E(X)-2E(Y)+7=-1-2*3+7=0;D(Z)=D(X-2Y+7)=D(X)+4
思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=
方差为3+4=7DZ=DX+DY如果有系数系数要平方
2X-3Y~N(-4,39)再问:怎么求的?再答:E(2x-3Y)=2EX-3EY=-4D(2X-3Y)=4DX+9DY=39
一个线性函数的正常分布或正态分布E(Y)=(1-2X)?=1-2EX=1D(Y)=D(1-2X)=4D(X)=4因此,YN(1,4)
X〜N(0,1),FX(x)=Φ(x),fX(x)=φ(x)y
当y≥1时FY(y)=P{Y≤y}=P{2X²+1≤y}=P{X≤√[(y-1)/2]}=FX(√[(y-1)/2])fY(y)=dFY(y)/dy=dFX(√[(y-1)/2])/dy=1
你写错了,X平方的期望是1,而X的4次方的期望才是3.
E(Z)=E(2X-4Y+3)=2E(X)-4E(Y)+E(3)=2-0+3=5
F(n,1).t(n),即X~X1/(根号下Y/n),其中,X1~N(0,1),χ方(n),这样以来,大致就可以看懂了吧?
F(y)=P(Y再问:后面那一串上角标是怎么个意思?再答:具体点
这是标准正态分布P(-3
P(x=1)=a/2P(x=2)=a/6P(x=3)=a/12P(x=4)=a/20所以a/2+a/6+a/12+a/20=1得到a=1.25故P(1/2
E(x^2)=D(x)+E(X)^2=4+1=5如有意见,欢迎讨论,共同学习;如有帮助,
一个二维正态分布的边缘分布的和总是正态分布.特别的,两个独立正态分布的和总是正态分布.由X~N(1,4),有2X~N(2,16).由Y~N(2,1),有Y+1~N(3,1).于是E(Z)=E(2X+Y