随机变量X-N(-1,3的平方)Y-N(2,4的平方),且xy相互独立,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:07:09
设随机变量X服从参数为3的泊松分布,则X平方数学期望,

依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;

设随机变量X的概率密度为 f(x)={A(X的平方),1

∫(-∞,+∞)f(x)dt=∫[1,2]Ax^2dx+∫[2,3]Axdx=A/3*x^3[1,2]+A/2x^2[2,3]=7/3A+5/2A=1A=6/29F(x)=∫(-∞,x)f(t)dt=

设随机变量X~N(0,1),Y=X²,求Y的概率密度.

X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:

随机变量X~N(-3,1),N(2,4),且X、Y相互独立,令Z=X-2Y+5,求X,Y的概率密度

首先,设c为常数,则E(c)=c,D(c)=0.然后要知道X~N(-3,1)的意思是X服从期望为-3,方差为1的正态分布,即E(X)=-3,D(X)=1.同理,E(Y)=2,D(Y)=4.所以:E(Z

设随机变量X服从正态分布N(0,1).Y=2(X的平方)+X+3,则X 与Y的相关系数是?

E(X)=0,D(X)=E(X^2)=1,E(X^3)=0E(X^4)=3E(Y)=2*E(X^2)+E(X)+3=5E(XY)=2*E(X^3)+E(X^2)+3*E(X)=1E(Y^2)=4*E(

已知随机变量X~N(-1,1),N(3,1)且X与Y相互独立,设随机变量Z=X-2Y+7,求Z的概率分布.

你这个问题怎么提了2次啊,我都给你回答了啊X,Y均服从正态分布,Z也服从正态分布E(Z)=E(X-2Y+7)=E(X)-2E(Y)+7=-1-2*3+7=0;D(Z)=D(X-2Y+7)=D(X)+4

随机变量X~N(0,1),求下列随机变量Y=X^2的概率密度函数

思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=

已知随机变量X-N(1,3),Y-N(2,3),且X,Y独立,则2X-3Y服从的分布为

2X-3Y~N(-4,39)再问:怎么求的?再答:E(2x-3Y)=2EX-3EY=-4D(2X-3Y)=4DX+9DY=39

设随机变量X服从标准正态分布N(0,1),求随机变量函数Y=X平方的概率密度(详细计算过程)

一个线性函数的正常分布或正态分布E(Y)=(1-2X)?=1-2EX=1D(Y)=D(1-2X)=4D(X)=4因此,YN(1,4)

设随机变量X〜N(0,1),求Y=2x平方+1的概率密度函数.

当y≥1时FY(y)=P{Y≤y}=P{2X²+1≤y}=P{X≤√[(y-1)/2]}=FX(√[(y-1)/2])fY(y)=dFY(y)/dy=dFX(√[(y-1)/2])/dy=1

X是服从(0.1)正态分布的随机变量,X的平方的期望为什么等于3

你写错了,X平方的期望是1,而X的4次方的期望才是3.

概率论的问题 若随机变量X~t(n),则Y=1/X^2~____________.

F(n,1).t(n),即X~X1/(根号下Y/n),其中,X1~N(0,1),χ方(n),这样以来,大致就可以看懂了吧?

设随机变量X~N(0,1),求Y=X^2的概率密度

F(y)=P(Y再问:后面那一串上角标是怎么个意思?再答:具体点

随机变量的概率分布列为p(x=n)=a/n×(n+1) n=1,2,3,4.其中a为

P(x=1)=a/2P(x=2)=a/6P(x=3)=a/12P(x=4)=a/20所以a/2+a/6+a/12+a/20=1得到a=1.25故P(1/2

设随机变量X~N(1,4),则E(X的2平方)等于多少?

E(x^2)=D(x)+E(X)^2=4+1=5如有意见,欢迎讨论,共同学习;如有帮助,

若随机变量X~N(1,4),Y~N(2,1),且X,Y相互独立,试求随机变量Z=2X-Y+1的概率密度

一个二维正态分布的边缘分布的和总是正态分布.特别的,两个独立正态分布的和总是正态分布.由X~N(1,4),有2X~N(2,16).由Y~N(2,1),有Y+1~N(3,1).于是E(Z)=E(2X+Y