随机变量X与Y相互独立,X的概率密度为fx=3e-3x次幂

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:16:11
概率论 已知随机变量X,Y,Z相互独立,

2X~N(2,8),3Y~N(0,27),则2X+3Y-Z~N(0,36),即标准差为6,期望为0.化为标准正态W=1/6*(2X+3Y-Z)那么概率就等于P(0≤W≤1)=Φ(1)-Φ(0)=0.8

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

设随机变量X与Y均服从参数为λ的指数分布,且X与Y相互独立,求Z=X+Y的密度函数

fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ&#

如何求二维随机变量X和Y是否相互独立?

先求x,Y的边缘分布律.如果P(X=xi,Y=yj)=P(X=xi)P(Y=yj)则相互独立.否则不独立

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X/Y的概率密度.

联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量4X+3Y与3X-4Y的联合密度函数.

x,y独立,正态分布.那么x,y的和差运算仍然是正态分布.E(4X+3Y)=4E(x)+3E(y)=0D(4x+3y)=16D(x)+9D(y)=25因此4X+3Y~N(0,25)同理3X-4Y~N(

X与y是相互独立的随机变量 但为什么D|X-Y|不=DX+DY? 谢谢

回答:|X-Y|不同于X-Y或X+Y.取了绝对值后,取值范围大于等于0,改变了原来变量的分布特性.

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量x与y相互独立,都服从参数为1的指数分布,求P{X

对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~

设随机变量X与Y相互独立,N(1,2),(0,1),求随机变量Z=X-Y的分布,并求P(X>Y )的概率

N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?

相互独立随机变量X与Y都服从[0,1]上的均匀分布,求Z=X-Y密度函数

先求分布函数,其中Z的取值范围[-1,1],应该要分类讨论

1、设二维随机变量(X,Y)的概率密度为,问X与Y是否相互独立,并说明理由.

1fx=int(-oo,+oo)f(x,y)dy=1fy=int(-oo,+oo)f(x,y)dx=0.5e^(-0.5y)f(x,y)=fx*fy,独立20-8上的均匀分布EX=int(0,8)x/

随机变量X,Y相互独立,概率密度f(x)

f(x,y)=1/4*exp{-x-y/4}(x>0,y>0)f(x,y)=0(其他)

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

若X,Y是相互独立的随机变量,那么X,2Y相互独立吗

相互独立再问:那如果设f(x)为概率密度,那么f(2x)=2f(x)还是f(2x)呢?谢谢!再答:先给分吧再问:请讲一下吧,谢谢!再答:第一个再答:再答:对其求导

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+