sn=2an-4n 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:27:01
设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式

Sn=(1/4)(an+1)^2S(n-1)=(1/4)[a(n-1)+1]^2相减且an=Sn-S(n-1),所以4an=(an+1)^2-[a(n-1)+1]^2[a(n-1)+1]^2=(an+

设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2,求数列AN的通项公式

等比数列定义an+1=qanq不为零,且各项不为零等差数列定义an+1-an=pp为常数你上面提到的两个问题分别把{an-2an-1}、{an/2^n}看成an

数列an的前n项和为Sn,a1=1/4且Sn=Sn-1+an-1+1/2(n-1为下标)

1Sn=Sn-1+an-1+1/2an-an-1=1/2an=a1+(n-1)/2=1/4+(n-1)/2=n/2-1/423bn-bn-1=n3bn-3n/2-3/4=bn-1-(n-1)/2-1/

数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn

当n=1时、有2s1+1=3a1,即有a1=1,因为2Sn+1=3an,所以2Sn+1+1=3an+1.后式减去前式,得2an+1=3an+1-3an.即有an+1=3an,为等比数列,且公比为3,所

数列{an}中,Sn-2an=2n.

(1)证明:∵Sn-2an=2n,①∴Sn+1-2an+1=2(n+1).②②-①,得:an+1-2an+1+2an=2,∴an+1=2an-2,∴an+1-2an-2=(2an-2)-2an-2=2

已知数列an前n项和为Sn,且满足4(n+1)(Sn+1)=(n+2)^2an(n属于正整数) 求an

(2)a1=84(n+1)(Sn+1)=(n+2)^2.anSn+1=(n+2)^2.an/[4(n+1)](1)S(n-1)+1=(n+1)^2.a(n-1)/(4n)(2)(1)-(2)an=(n

数列{an},前n项和sn,a1=2,a1、S(n+1)、4Sn成等差数列,求{an}通项公式、Sn

由题意得:2S(n+1)=4Sn+a1,则2Sn=4S(n-1)+a1解得:a(n+1)=2an,则{an}为等比数列,公比q=2所以,an=a1q^(n-1)=2^n同样:2S(n+1)=4Sn+a

n1=2,n2=++n1,n1=n2++ 执行后n1,n2的值

n2=++n1先作n1=++n1,此时n1=n1+1=2+1=3,再作n2=n1=3n1=n2++先作n1=n2=3,再作n2=n2++=n2+1=3+1=4执行后n1=3,n2=4

已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列

1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=

设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2

Sn+1=4an+2Sn=4a(n-1)+2相减得Sn+1-Sn=4an+2-4a(n-1)-2an+1=4an-4a(n-1)an+1-2an=2(an-2an-1)bn=2bn-1(2)求数列{a

an的前n项和Sn,a1=1,an+1=(n+2)/nSn,证数列Sn/n是等比数列和Sn+1=4an

1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)SnnS(n+1)=(n+2)Sn+nSnnS(n+1)=(2n+2)SnS(n+1)/(n+1)=2Sn/

已知sn为数列an的前n项和,其中满足a1=4,an=3an-1-2,求an及sn

你在步步高上看的题吧?前一阵子给人辅导做过这道题...这道题不是常规方法也用不了配凑系数出现新的等差等比数列这道题当时我们也研究了半天方法就是把a1,a2,a3,a4,...往后列,不要把a1=4带入

已知a1=1,Sn=n^2an 求:an及Sn

Sn-1=(n-1)(n-1)an-1Sn-Sn-1=an=nnan-(n-1)(n-1)an-1(nn-1)an=(n-1)(n-1)an-1an=(n-1)/(n+1)*(n-2)/(n-1)*…

已知数列{an}中,Sn是其前n项和,并且Sn+1=4an+2 a1 =1 求an 通项公式

哎,看你着急的样子,我就替你解了此因果S(n+1)=4an+2Sn=4a(n-1)+2相减得:a(n+1)=4an-4a(n-1)移向得a(n+1)-2an=2(an-2a(n-1)){a(n+1)-

已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.

(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an

数列{an}中,a1=2,an+1=4an-3n+1,求数列Sn,证明不等式Sn+1

a(n+1)=4a(n)-3n+1,a(n+1)-(n+1)=4a(n)-4n=4[a(n)-n],{a(n)-n}是首项为a(1)-1=1,公比为4的等比数列a(n)-n=4^(n-1),a(n)=

Sn=2An+3n-12

(1)An=3(1+2^n)(2)由题知,Sn=2An+3n-12=6(2^n-1)+3nBn=(An-3)/(Sn-3n)(A(n+1)-6)=(3*2^n)/(6(2^n-1))(3(2^(n+1

数列an中前n项和Sn,a1=4,n≥2时,an=[√Sn+√S(n-1)]/2,求an

a1=4>0,n≥2时,an的表达式为两算术平方根之和的一半,又算术平方根恒非负,因此{an}各项均非负,√Sn恒有意义.n≥2时,an=Sn-S(n-1)=[√Sn+√S(n-1)]/2[√Sn+√

已知Sn是数列{an}的前n项和,an>0,Sn=(an²+an)/2

1.n=1时,S1=a1=(a1²+a1)/2,整理,得a1²-a1=0a1(a1-1)=0a1=0(与已知不符,舍去)或a1=1S1=a1=1n≥2时,Sn=(an²+

已知{an}的前n项和为Sn,且an+Sn=4

an+Sn=41a(n+1)+S(n+1)=2a(n+1)+Sn=422-1得2a(n+1)-an=0a(n+1)=1/2anan+Sn=4an≠0a(n+1)/an=1/2数列{an}是等比数列