Sn=5an 3-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:19:54
已知数列an前n项和为Sn,且满足a1=4,Sn+Sn+1=5/3an+1

林永嘉,把分给我把,哈哈.Sn+S(n+1)=(5/3)a(n+1)=(5/3)[S(n+1)-Sn]4Sn=Sn+1Sn+1/Sn=4则,Sn成等比数列S1=a1Sn=4*4^(n-1)=4^n你的

求和Sn=1-2 3-4+

查收!再答:正在上传中再答:再答:

数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式

分析:由于对于数列的n值有不同范围取值,对应不同的求和公式,可知数列为分段数列,需要对不同范围的n值进行讨论,方可求得数列的通项公式;当n=1时,a1=S1=3+1=4;当2≤n≤5时,an=Sn-S

急求!高一数学题:已知数列{an},a1 = 1 , Sn是前n项和,Sn+1= Sn/( 3+4Sn) n >= 1

1/S(n+1)=3/Sn+4令1/Sn=bn则有b(n+1)=3bn+4b(n+1)+2=3(bn+2)等比数列,则bn+2=(b1+2)*3^(n-1)b1=1/S1=1/a1=1所以bn=3^n

an=sn-s(n-1)

an=2^(n)-1-(2^(n-1)-1)=2*(2^(n-1))-1-2^(n-1)+1=2^(n-1)你上面少个-1

已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).

(Ⅰ)由Sn+1=2Sn+n+5(n∈N*)得 Sn=2Sn-1+(n-1)+5(n∈N*,n≥2)两式相减得 an+1=2an+1,∴an+1+1=2(an+1)即 &

数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn

当n=1时、有2s1+1=3a1,即有a1=1,因为2Sn+1=3an,所以2Sn+1+1=3an+1.后式减去前式,得2an+1=3an+1-3an.即有an+1=3an,为等比数列,且公比为3,所

数列{an} a1=4 Sn+Sn+1=5/3 an+1 求An 那些1都是下标

s(n)+s(n+1)=(5/3)a(n+1),s(1)+s(2)=2a(1)+a(2)=(5/3)a(2),2a(1)=(2/3)a(2),a(2)=3a(1)=12.s(n+1)+s(n+2)=(

求和:Sn=1+(1+12

∵1+12+14+…+(12)n-1=1−(12)n1−12=2−12n−1,∴Sn=2n−(1+12+122+…+12n−1)=2n-1−12n1−12=2n-2+12n−1.

已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*)

(I)由已知Sn+1=2Sn+n+5(n∈N*),可得n≥2,Sn=2Sn-1+n+4两式相减得Sn+1-Sn=2(Sn-Sn-1)+1即an+1=2an+1从而an+1+1=2(an+1)当n=1时

已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列

由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn

数列{an}前n项和为Sn,且Sn=n-5an-85,证明{an-1}是等比数列

Sn=n-5an-85S1=1-5a1-85即a1=1-5a1-85解得a1=-14an=Sn-S(n-1)=n-5an-85-[(n-1)-5a(n-1)-85]=-5an+5a(n-1)+16an

正项无穷等比数列{an}前n项和为Sn,lim(Sn/Sn+1)=1 求公比范围

设首项为a1,公比为r,当r=1时,Sn=n(a1),此时Sn/S(n+1)的极限为1r≠1时,Sn=a1(1-r^n)/(1-r),Sn/S(n+1)=(1-r^n)/(1-r^(n+1)),极限为

Sn=1*2+3*2^2+5*2^3+……+(2n-1)*2^n 求Sn=

Sn=1*2+3*2^2+5*2^3+……+(2n-1)*2^n2Sn=1*2^2+3*2^3+...+(2n-1)*2^(n+1)相减得-Sn=1*2+2*2^2+2*2^3+..+2*2^n-(2

Sn=1-5+9-13+17-21+……+(-1)^n-1(4n-3),求Sn?

因为1-5=-4,9-13=-4,17-21=-4,当n为偶数时,有n/2个-4,即Sn=-4*n/2,当n为偶数时,有(n-1)个-4,再+数列最后一项(-1)^n-1(4n-3),此时(-1)^n

设Sn=-1+3-5+7-…+(-1)n(2n-1),则Sn=______.

当n是偶数时,Sn=(-1+3)+(-5+7)+…+[-(2n-3)+(2n-1)]=2+2+…+2(共n2项)=2×n2=n.当n是奇数时,Sn=(-1+3)+(-5+7)+…+[-(2n-5)+(

已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn

由题意,S(n)-S(n-1)=2a(n+1)-2a(n),即a(n)=2a(n+1)-2a(n),于是a(n+1)=a(n)*3/2,即a(n)是公比是q=3/2的等比数列,且首项是a(1)=1,所

Sn=3+2^n Sn-1=3+2^(n-1).则Sn-Sn-1=?

 再问: 再问:那个划横线的答案是不是错了再答:我觉得是

在数列{An}中,已知A1=1,An=2Sn^2/(2Sn-1),(n>=2),证明{1/Sn}是等差数列,并求Sn

n>=2时:∵an=2Sn^2/[(2Sn)-1]∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]两边同时乘以(2Sn)-1并化简得2Sn(Sn-1)+Sn-(Sn-1)=0两边同时除以Sn(Sn

Sn=1x2+3x2^2+5x2^3+…+(2n-1)x2^n sn=2sn-sn

2sn=2x2+3x2^2x2+5x2^3x2(2n-1)x2^nx2sn=2sn-sn=2x2^2+2x2^3+…+2x2^n-1x2