Sn=An^2 Bn怎样构造等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:11:05
∵an是Sn与2的等差中项∴2an=Sn+2(*)令n=1,得2a1=S1+2=a1+2∴a1=2由(*)得:2a(n+1)=S(n+1)+2两式相减,得:2a(n+1)-2an=a(n+1)即a(n
an=Sn-S(n-1)=104-3n∵令104-3n=0,得n=104/3∴当n≤34时,an>0当n≥35时,an<0∵bn=|an|∴当n≤34时,bn=104-3n当n≥35时,bn=3n-1
(1)已知,2an=2+Sn.则,2a1=a1+2,a1=2n>=2时,2an-1=2+Sn-1=2+Sn-an=2+(2an-2)-an=an则数列an为以a1=2为首项,2为公比的等比数列,则an
Sn=-an+2-2^(1-n)S(n+1)=-a(n+1)+2-2^(-n)a(n+1)=-a(n+1)+an-2^(-n)+2^(1-n)2a(n+1)=an+2^(-n)两边同乘以2的n次方得到
再问:我的题和你的不是同一道啊。我的是求证再答:证明:当n≥2时:an=Sn-S(n-1)=an^2+bn-an^2-(b-2a)n-a+b=b-a+2an上式可写成:an=a1+(n-1)d,其中a
sn=2n^2-n,bn=sn/(n+p)=(2n^2-n)/(n+p)b1=1/(1+p),b2=6/(2+p),b3=15/(3+p).bn是等差数列,则b1+b3=2b2,即1/(1+p)+15
1)∵a2=b2∴1+d=1×q∵a4=b4∴1+3d=1×q^3组合成方程组后把d=q-1带入1+3d=q^3q^3-3q+2=0q^3-3q+3-1=0q^3-1-3(q-1)=0(q-1)(q^
S3=a1+a2+a3=a1+a1+d+a1+2d=3(a1+d)=12a1+d=4=a2(a2)^2=2a1*(a3+1)16=2a1*(a1+2d+1)a1+d=4联合方程解得a1=8(舍去)a1
2an=Sn+1,2a(n-1)=S(n-1)+1两试相减得:an=2an-2a(n-1)an=2a(n-1),所以an是公比为2的等比数列,2a1=a1+1,a1=1an=2^(n-1)b1=a1=
S17=a1+a2+……+a17=17a9T17=b1+b2+……+b17=17b9(先利用等差数列的特性(n项相加等于它的中位数),再用等量置换的方法)Sn/Tn=2n+3/3n-1S17/T17=
(1)这道题很基础,希望楼主可以自己独立掌握Sn=2An-2^nS(n-1)=2A(n-1)-2^(n-1)两式相减得An-2A(n-1)=2^(n-1)等式两边同时除以2^(n-1)得An/[2^(
(1)an是Sn与2的等差中项即a1=2sn=2an-2所以s(n-1)=2a(n-1)-2an=sn-s(n-1)=2a(n-1)所以an为等比数列公比为2首项为2则an=2^n而点P(bn,bn+
an是n与Sn的等差中项,即:an-n=Sn-an,亦即:2an=n+Sn令n=1,代入得a1=1当n≥2时:2an=n+Sn;2a(n-1)=(n-1)+S(n-1)二式相减:2an-2a(n-1)
证:设等比数列{an}公比为q,对于数列{bn},对数有意义,q>0an=a1×q^(n-1)n=1时,b1=log3(a1)=log3(81)=4n≥2时,bn=log3(an)=log3(a1×q
再答:满意采纳,不懂追问,谢谢
解题思路:第三问利用两次恒成立问题处理方法,大于哪个函数恒成立,只需大于函数的最大值。含参数的二次函数,又因为二次项系数大于零,只需根的判别式小于零。解题过程:
∵Cn=an×bn=2n×2^n∴Tn=C1+C2+C3+C4+……+Cn=2×2^1+4×2^2+6×2^3+8×2^4+……+2n×2^n……①∴2Tn=2C1+2C2+……+2Cn=2×2^2+
Sn+an=nS(n-1)+a(n-1)=n-1an+an-a(n-1)=12an=a(n-1)+1bn=an-12an-2=a(n-1)-12bn=b(n-1)bn=(1/2)b(n-1)故等比a1
再问:an呢再答:手机用户,请在客户端右上角评价点“满意”即可再问:an呢再问:喂