sn是等比数列an的前n项和,若a1,a7,a4成等差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:41:33
A(n+1)=2S(n)+1,A(n)=2S(n-1)+1,A(n+1)-A(n)=2[S(n)-S(n-1)]=2[A(n)],A(n+1)=3A(n)所以,数列{A(n)}是首项为1,公比为3的等
设公比为q,当q=-1时,等比数列{an}的各项是a,-a,a,-a,a,-a…的形式,a≠0.又已知Sn是实数等比数列{an}前n项和,故当n为偶数时,Sn=0,当n为奇数时,Sn=a,故选D.
a1=S1=2+ka2=S2-S1=(4+k)-(2+k)=2a3=S3-S2=(8+k)-(4+k)=4等比则a2²=a1a34=4(2+k)k=-1
an+sn=-2n-1,当n=1时,a1+s1=-3,则a1=-3/2.由已知得:sn=-2n-1-an当n大于或等于2时,则an=sn-s(n-1)=-2n-1-an-[-2(n-1)-1-a(n-
n=1时,a1=1+3a1.即a1=-1/2.n>1时,an=Sn-Sn-1=1+3an-(1+3a(n-1))=3an-3a(n-1),即an=3/2a(n-1),即an=-1/2*(3/2)^(n
Sn=n-5an-85S1=1-5a1-85即a1=1-5a1-85解得a1=-14an=Sn-S(n-1)=n-5an-85-[(n-1)-5a(n-1)-85]=-5an+5a(n-1)+16an
a2=a1qa8=a1q^7a5=a1q^42a8=a2+a52a1q^7=a1q+a1q^42q^6=1+q^32q^6=1+q^32q^6-q^3-1=0(2q^3+1)(q^3-1)=0q^3=
Sn=2an-3n+5S(n-1)=2a(n-1)-3(n-1)+5相减an=2a(n-1)+3an+3=2a(n-1)+6an+3=2[2a(n-1)+3]
Sn-S(n-1)=an=2an+3-2a(n-1)-3=2an-2a(n-1)an=2a(n-1){an}为等比数列,公比为2
求出首项a1和公比q代入公式就可以了当q≠1时an=a1q^(n-1)sn=a1(1-q^n)/(1-q)当q=1时an=a1sn=na1
Sn=2an-3nS(n-1)=2a(n-1)-3(n-1)两式相减an=2an-2a(n-1)-3an+3=2[a(n-1)+3]所以数列{an+3}是以首项为3,公比为2的等比数列
为了避免混淆,我把下角标放在内.首先从数列本身的基本意义出发a=S-S其次,从已知a=S(n+2)/n出发a=S*(n+1)/(n-1)因此S-S=S*(n+1)/(n-1)移项整理S=S
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)SnnS(n+1)=(n+2)Sn+nSnnS(n+1)=(2n+2)SnS(n+1)/(n+1)=2Sn/
(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1
Sn=4An-3S(n-1)=4A(n-1)-3Sn-S(n-1)=An=4An-3-[4A(n-1)-3]=4an-3-4A(n-1)+3=4An-4A(n-1)3An=4A(n-1)An/A(n-
Sn+an=n^2+3n+5/2①当n=1时,S1+a1=1^2+3*1+5/2=13/2而S1=a1,所以2a1=13/2,即a1=13/4,所以a1-1=9/4;又S(n-1)+a(n-1)=(n
a3=a1*q^2;a9=a1*q^8;a6=a1*q^5;因为a3,a9,a6是等差数列,所以,2a9=a3+a6.化简,2q^9=q^3+q^6.s3+s6=a1*(1-q^3)/(1-q)+a1
Sn=4-4×2^(-n)S(n-1)=4-4×2^(-n+1)an=Sn-S(n-1)=4-4×2^(-n)-【4-4×2^(-n+1)】=-4×2^(-n)+4×2^(-n+1)=-4×(1/2)
由题意,S9-S3=S6-S9而S9-S3=A4+...+A9S6-S9=-(A7+A8+A9)而(A4+A5+A6)+2(A7+A8+A9)=0A3(Q+Q²+Q²)+2A6(Q
(1)令n=1,得a1=-1.Sn=2an+n,S(n+1)=2a(n+1)+n+1.两式相减,得a(n+1)=2a(n+1)-2an+1.整理得a(n+1)-1=2(an-1),a1-1=-2.综上