2√3cos²x6sinx.cosx=3√3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:06:48
由(sinx+cosx)^2=1/25得2sinxcosx=-24/25,(sinx-cosx)^2=48/25得sinx-cosx=-4√3/5,故sin^3x-cos^3x=(sinx-cosx)(1+sinx
f(x)的表达式是什么……再答:再问:cos(x-π/3)怎么化成1/2cosx+√3/2sinx再答:cos(a-b)=cosacosb+sinasinb那么这里cos(x-π/3)=cosx·cosπ/3+sinx·sinπ/3=1/2
cosx+根号3sinx=2*[1/2cosx+(根号3)/2sinx]=2*【sinπ/3*2cosx+cosπ/3*sinx】=2cos(x-π/3)希望我的答案您能满意,
第一问,带入计算就可以,第二问,让x+t代替x然后使前后两个等式相等即可求出t,第三问对函数求导后大于0,求得这个不等式的解就为单调增区间
1.f(x)=1/2cos2x+√3/2sin2x+cos^2x-sin^2x=3/2cos2x+√3/2sin2x=√3sin(2x+π/3)2.x属于【-π/12,π/2】,所以2x+π/3属于【π/6,4π/3】,.所以f(x)在此区
y=cosx*(-2)sin[(x+x+2/3)/2]sin[(-2/3)/2]=2cosxsin(x+1/3)sin(1/3)=2sin(1/3)cosxsin(x+1/3)=2sin(1/3)(1/2)*[sin(2x+1/3)+sin
额,不是呀f(x)=sinx-tanxf(x)的导数f'(x)=cosx-1/(cosx)^2导数小于0说明原函数单调递减再问:不好意思,我数学不是很好我可以再问一下不。。。??f(x)=sinx-tanx怎么得到。f'(x)=cosx-1
f(x)=2cos(2x+π/3)+√3(sinx+cosx)^2=cos2x-√3sin2x+√3(1+sin2x)=cos2x+√3,
f(x)=√3/2sin2x+(1+cos2x)/2=sin(2x+π/6)+1/21)所以最小正周期为2π/2=π单调增区间为(-π/3+kπ,π/6+kπ),k∈Z2)对称轴为π/6+kπ/2,k属于Z因为0
cos(x)cos(2x)=[cosx+cos(3x)]/2根据公式cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]原等式右边=[cosx+cos(3x)]/2=[cos(3x)+cosx]/2=cos[(3x+x)/
f(x)=向量a.向量b.=2cosx*cos(x-π/3)+sinx*√3sinxcosx-sin^2x.=2cosx[cosxcos(π/3)+sinxsin(π/3)]+(√3/2)*2sinxcosx-sin^2x.=2cos^2x
y=2sinx*cos(3π/2+x)+√3cosx*sin(π+x)+sin(π/2+x)*cosx=2sinx*sinx-√3cosx*sinx+cosx*cosx=1+(sinx)^2-√3cosx*sinx=1+(1-cos2x)/
f(x)=a*b+2f(x)=2cosxcos(x-π/6)+sinx(cosx-√3sinx)+2f(x)=cosx[√3cosx+sinx]+sinxcosx-√3sin²x+2f(x)=√3cos²x+2sinxc
f(x)=mn+a=2cosx+2√3sinxcosx+a=√3sin2x+cos2x+1+a=2sin(2x+π/6)+1+a当a=-1时f(x)=2sin(2x+π/6)因为x∈(0,π)===>2x+π/6∈(π/6,13π/6)==
∵向量m//向量p∴√3sinx/(2√3)=cosx/1即sinx=2cosx两边平方得:sin²x=4cos²x又∵sin²x+cos²x=1∴5cos²x=1即cosx=±√5/5当c
2(cosx)平方+3sinx=32(1-sinx平方)+3sinx=32sinx平方-3sinx+1=0sinx=1,sinx=1/2.(sinx-sin2x+sin3x)/(cosx-cos2x+cos3x)=(sinx+sin3x-s
1.1/2cosx-√3/2sinx=cosπ/3cosx-sinπ/3sinx=cos(x+π/3)2.√3sinx+cosx=2[(√3/2)sinx+(1/2)cosx]=2(cosπ/6sinx+sinπ/6cosx)=2sin(x
是(sinx+cosx)/(sinx-cosx)=2和[2cos(π-x)-3sin(π+x)]/[4cos(-x)+sin(2π-x)]吗?如果是的话:(sinx+cosx)/(sinx-cosx)=2sinx+cosx=2sinx-2c
sin(x-π/3)-cos(x+π/6)+√3cosx=sinxcosπ/3-cosxsinπ/3-cosxcosπ/6+sinxsinπ/6+√3cosx=1/2*sinx-√3/2*cosx-√3/2*cosx+1/2*sinx+√3