v为线性空间,花A为v上的线性变换,已知花A的平方等于花A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:42:17
题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=
先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一
设α,β∈W^⊥则任意γ∈W,(α,γ)=0=(β,γ)故(α+β,γ)=(α,γ)+(β,γ)=0+0=0故α+β⊥γ=>α+β∈W^⊥且(kα,γ)=k(α,γ)=0故kα⊥γ=>kα∈W^⊥故W
是根据则a在基β下的矩阵为T^-1AT的定义来的,看下矩阵的基变换定义就知道了再问:要推的就是这结论,用结论证结论?
零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属
(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker
基本上忘光了,只能给你建议个思考方向.多项式矩阵和Jordan标准型
特征值的和等于矩阵的迹tr(A)=a11+a22+...+ann
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
能构成,V是他的子空间,验证加法和数乘运算的封闭性就可以了
设A是线性空间V上的可逆线性变换σ的矩阵,则A是可逆矩阵,于是|A|不为零,而|A|等于矩阵A的所有特征值之积,所以矩阵A的所有特征值之积也不为0.所以A的所有特征值也不为0.A的特征值就是σ的特征值
第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2
V必存在一组正交基r=1V的基的线性组合有无穷多个,可组成无穷多彼此间线性无关的子空间的基,这是因为,n元齐线性方程组有无穷多个,且必有解.1
用反证法.若λ=0是特征值,ξ是对应的特征向量,那么: Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^
(证明存在向量a属于V但a不属于V1、V2中任意一个)证明:因为V1、V2互不包含且它们均V的真子空间从而必存在a1属于V1且a1不属于V2、a2属于V2且a2不属于V1现证明a1+a2不属于V1且a
T(1,x,x^2,x^3)=(T(1),T(x),T(x^2),T(x^3))=(0,0,2,6x)=(1,x,x^2,x^3)KK=0020000600000000
则W是V的子空间的判别条件为________对任意k1∈P,k2∈P和α∈W,β∈W有k1α+k2β∈W.亦即:W对V上的线性运算封闭.
你不是在写题解吧怎么这么多问题?A(α+β)=Aα+AβA(kα)=kAα