v为线性空间,花A为v上的线性变换,已知花A的平方等于花A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:42:17
下列n维向量的集合V,是否构成P上的线性空间

题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=

设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:

先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一

设w为线性空间v的一个子空间,证明w的正交补w^⊥是v的一个子空间

设α,β∈W^⊥则任意γ∈W,(α,γ)=0=(β,γ)故(α+β,γ)=(α,γ)+(β,γ)=0+0=0故α+β⊥γ=>α+β∈W^⊥且(kα,γ)=k(α,γ)=0故kα⊥γ=>kα∈W^⊥故W

线性变换矩阵基α=(a1,...,an),基β=(b1,...,b2)是线性空间V的两组基,α到β的过度矩阵为T,线性变

是根据则a在基β下的矩阵为T^-1AT的定义来的,看下矩阵的基变换定义就知道了再问:要推的就是这结论,用结论证结论?

证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关

零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属

设A为数域P上的n维线性空间V的线性变换,且A^2=A

(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker

问刘老师,设a为线性空间V的一个线性变换,A为a在某组基下的矩阵

特征值的和等于矩阵的迹tr(A)=a11+a22+...+ann

在N维线性空间Pn中,下列N维向量的集合V,是否构成P上的线性空间:V={x=(a1,a2…an)|Ax=0,A∈Pm*

能构成,V是他的子空间,验证加法和数乘运算的封闭性就可以了

设σ是线性空间V上的可逆线性变换,证明:(1)σ的特征值一定不为零.

设A是线性空间V上的可逆线性变换σ的矩阵,则A是可逆矩阵,于是|A|不为零,而|A|等于矩阵A的所有特征值之积,所以矩阵A的所有特征值之积也不为0.所以A的所有特征值也不为0.A的特征值就是σ的特征值

设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;

第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2

设V为n维线性空间,其中n>1.证明:对任意的1≤r

V必存在一组正交基r=1V的基的线性组合有无穷多个,可组成无穷多彼此间线性无关的子空间的基,这是因为,n元齐线性方程组有无穷多个,且必有解.1

设A为数域P上的线性空间V的线性变换,证明:

用反证法.若λ=0是特征值,ξ是对应的特征向量,那么:   Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^

高等代数线性空间,设v为p上的线性空间,v≠{0},v1v2是v

(证明存在向量a属于V但a不属于V1、V2中任意一个)证明:因为V1、V2互不包含且它们均V的真子空间从而必存在a1属于V1且a1不属于V2、a2属于V2且a2不属于V1现证明a1+a2不属于V1且a

设V是数域P上的线性空间,W是V上的一个非空子集,则W是V的子空间的判别条件为________

则W是V的子空间的判别条件为________对任意k1∈P,k2∈P和α∈W,β∈W有k1α+k2β∈W.亦即:W对V上的线性运算封闭.

设V为数域P上的线性空间,A是V上的变换,任意α,β∈v,任意k∈P,

你不是在写题解吧怎么这么多问题?A(α+β)=Aα+AβA(kα)=kAα