x 2=y 3=z 4,求2x^2-y^2 z^2 xy 2yz-3xz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:53:52
x=log2(y)则X1+2X2+3X3=log2(y1)+2log2(y2)+3log2(y3)=log2(y1)+log2(y2^2)+log2(y3^3)=log2(y1y2^2y3^3)=1所
∵y=-2/x在(负无穷,0)上是增函数∴当y1>y2>y3>0时,0>x1>x2>x3选C
x3+y3=100(x+y)(x^2-xy+y^2)=100因x+y=1所以x^2-xy+y^2=100(x+y)^2-3xy=1001-3xy=100xy=-33x^2+y^2=(x+y)^2-2x
因为:X3-Y3-Z3=3XYZ所以:X3+(-Y)3+(-Z)3-3X(-Y)(-Z)=0(X-Y-Z)(X2+Y2+Z2+XY+XZ-YZ)=0所以:1.X-Y-Z=02.X2+Y2+Z2+XY+
(x+y+z)²-(x²+y²+z²)=2(xy+yz+zx)=-1,xy+yz+zx=-1/2x3+y3+z3=3xyz+(x+y+z)(x²+y&
(x+y+z)^2=[(x+y)+z]^2=(x^2+2xy+y^2)+z^2+2zx+2zy=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2(xy+xz+yz)=0x+y
∵(x+y+z)(x²+y²+z²)=x³+y³+z³+x²(y+z)+y²(x+z)+z²(x+y)∴1*2
设x2=y3=z4=k,则x=2k,y=3k,z=4k,∵2x-3y+4z=22,∴4k-9k+16k=22,∴k=2,∴x+y-z=2k+3k-4k=k=2.
y^2=x^3-3x^2+2xx^2=y^3-3y^2+2y两式相减得:y^2-x^2=(x^3-y^3)-3(x^2-y^2)+2(x-y)(x-y)(x^2+xy+y^2-2x-2y+2)=0所以
设x+3y3=2y+3z4=2z+2x5=k,则有:x+3y=3k2y+3z=4k2z+2x=5k,解得x=32ky=12kz=k;因此x:y:z=3:1:2.
(x2+z2)(x2+y2)(y2+z2)=(x+y)2-2xy×(x+z)2-2xz×(y+z)2-2yz--之后不清楚了
∵方程2x2-7xy+3y3=0有正整数解,∴△=49y2-24y3=y2(49-24y)≥0,且y>0,解得,0<y≤4924;∴y=1或y=2;①当y=1时,原方程化为2x2-7x+3=0,即(2
请想想直线方程通式y=kx+b三个点都在直线上,分别代入方程5=3k+b-------b=5-3k7=kx2+b-------kx2=7-5+3k=2+3k-----k=2----x2=4y3=-1k
7-5=2(x2-3),x2=4y3-5=2(-1-3),y3=-3
∵x2=y3=z4,∴6x=4y=3z,∵3x-2y+5z=-20,∴6x-4y+10z=-40,∴z=-4,∴x=-2,y=-3,∴x+3y-z=-2+3×(-3)-(-4)=-7;故答案为:-7.
设x2=y3=z4=k,则x=2k,y=3k,z=4k,∴4x−3y+5z2x+3y=4×2k−3×3k+5×4k2×2k+3×3k=1913.故答案为:1913.
根据题意,设x=2k,y=3k,z=4k∵x+y+z=18∴2k+3k+4k=18,解得k=2∴x=4,y=6,z=8∴x+y-z=2.
由题意得:x=2k,y=3k,z=4k,则原式=4k+3k−4k6k−6k+4k=34.
再问:能把第三题重新发一遍吗?再答:这三个题本质上式连在一起的再答:这道题应该是希望杯的试题