xy=ex–y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:42:56
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
xy=e^(x+y)两边对x求导,得:y+xy’=(1+y’)e^(x+y)移项,得:[x-e^(x+y)]y’=e^(x+y)-y整理得:y’=[e^(x+y)-y]/[x-e^(x+y)]将xy=
∵微分方程两边除以2,得同解的微分方程y″+12y′−12y=ex对应的齐次方程为y″+12y′−12y=0∴特征方程为r2+12r−12=0,解得特征根为:r1=−1,r2=12∴齐次方程的通解为:
求微分方程y'-y=ex的通解为了求这个方程的解,先考虑齐次线性方程:dy/dx-y=0,即有dy/y=dx,积分之得lny=x+lnC₁,于是得其通解为y=e^(x+lnC₁
特征方程为r^2+1=0,r=±i所以y1=C1sinx+C2cosx设y2=Ae^x则y2''=Ae^x2A=1,A=1/2所以y=y1+y2=C1sinx+C2cosx+e^x/2再问:确定吗?怎
楼主的这个结论明显是得不出来的.如果随机变量XY相互独立,那么有:EXY=EXEYXY相互独立,那么它们的相关系数:ρ=0ρ=Cov(X,Y)/√(DXDY)=0协方差:Cov(X,Y)=0Cov(X
∵dudx=∂f∂x+∂f∂y•dydx+∂f∂z•dzdx…(1)由exy-xy=2,两边对x求导得:exy(y+xdydx)-(y+xdydx)=0解得:dydx=-yx.又由ex=∫x-z0si
xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs
y=e^x-lncosx,这是函数的和差以及复合函数的综合求导应用.y'=e^x-(1/cosx)*(cosx)'y'=e^x-(1/cosx)(*-sinx)y'=e^x+tanx所以:dy=(e^
答案:5.(用线性规划的知识解决)由y≥1,y≤2x-1作出可行域(∵直线x+y=m不确定,∴可行域暂时不确定,但不影响解题)∵目标函数z=x-y的最小值为-1∴y=x-z截距最大时,z最小,为-1,
D(x+y)=D(x)+2cov(x,y)+D(y)由ρxy=cov(x,y)/[(√DX)(√DY)]可知cov(x,y)=-1再代入上式,得D(x+y)=3P{|x+y|》6}≤D(x+y)/a^
∵siny+e^x-xy^2=0,∴(dy/dx)cosy+e^x-[y^2+2xy(dy/dx)]=0,∴(cosy-2xy)(dy/dx)=y^2-e^x,∴dy/dx=(y^2-e^x)/(co
dy/dx=(y^2-e^x)/(cosy-2xy)
由:y=e2x+(1+x)ex得:y′=2e2x+(2+x)ex,y″=4e2x+(3+x)ex,将y,y′,y″代入原微分方程,整理可得:(4+2α+β)e2x+(1+α+β)xex+(3+2α+β
e^(x+2):表示e的(x+2)次方y=e^(x+2)ln(y)=x+2x=lny-2反函数是:y=(lnx)-2,其中x>0
∵y=4ex+1,∴y′=-4e(ex+1)2<0∵k为曲线在点P处的切线的斜率,∴k的取值范围是(-∞,0).故答案为:(-∞,0).
y=x^(e^x)(1)lny=e^xlnx(2)//:对(1)两边取对数y'/y=e^x(lnx+1/x)(3)//:(2)两边对x求导y'=x^(e^x)e^x(lnx+1/x)(4)//:最后结
因为点(x,y)和点(x,-y)关于x轴对称,所以y=-ex的图象与y=ex的图象关于x轴对称,故A和B错误;因为点(x,y)和点(-x,-y)关于原点对称,所以y=-ex的图象与y=e-x的图象关于
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).