xysinz=2z求dz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:55:54
柯西积分定理f=1/[4(z+2)]f'=-1/[4(z+2)^2]积分f/(z-1/2)^2dz=f'(1/2)=-1/[4(1/2+2)^2]=-1/25
1,等式两边对x进行求导,然后分离出dz,结果为:(1+x/z^2)dz=(1/z)dx-e^ydy,然后再把dz前面的那块除到等式的右边就可以了.2,用极坐标求积分,就是画出积分区域,应该是位于第一
dz/dx=arctan(xy)+xy/[1+(xy)^2](dz/dx)|(1,1)=π/4+1/2(dz/dy)|(1,1)=x^2/[1+(xy)^2]=1/2
答案见附图 说明:这是复变函数的环路积分,第一式子的积分是科希定理,可以查阅数学物理方法或复变函数的书籍.
两边同时微分:dx+2ydy+2zdz=2dzdz=1/(2-2z)dx+2y/(2-2z)dydz/dx=1/(2-2z)dz/dy=2y/(2-2z)注意:这是全微分求偏导数
z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
答案在图片上,点击可放大.
令u=x^2+y^3dz/dx=dz/duXdu/dx=e^uX2x=2xe^(x^2+y^3)dz/dy=dz/duXdu/dy=e^uX3y=3ye^(x^2+y^3)考查公式(e^x)'=e^x
对两个式子各自求对x的导数,构成方程组,解dz/dx.对两个式子各自求对y的导数,构成方程组,解dz/dy.dx/dz=(dz/dx)^(-1),dy/dz=(dz/dy)^(-1)
z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/
应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+
两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)
这类题目有两种方法,不过严格的说是一种方法,只是理解的方向不同.且说是两种方法吧.1、分别将式子对x,y求偏导数,然后整理式子就可可以得到答案了.z^x*ln(z)+x*z^(x-1)*z[x]=y^
收敛域0<|z|<+∞由于展开式再收敛羽内一致收敛,积分和求和可交换在进一步利用重要积分注意到展开式没有-1次幂项,所以每项积分值为0所以总的积分值为0
u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy
z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.
z=(2y+7)^2*ln(x^3+2)dz/dx=3x^2*(2y+7)^2/(x^3+2)dz/dy=2*(2y+7)*ln(x^3+2)