x^2 4y^ 9二重积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:36:35
用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
pi*(pi/2-1)
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
∫【(0-2π)dt∫(0-根号下16cos^2t+9sin^2t)pdp】你把p的积分限定错了!原因是:x=4cost,y=3sint是椭圆的参数方程,不是极坐标方程:p^2(cos^2t/16+s
∫(0->1)dx∫(x^2->x)(x^2+y^2)^(-1/2)dy=∫[0->π/4]dθ∫[0->sinθ/cos²θ](1/r)*rdr=∫[0->π/4]dθ∫[0->sinθ/
这一类积分题目,最好的方法肯定是积分变换了.从积分范围出发有令u=x-1/2,v=2y-1/4于是积分范围变成了u^2+v^2≤5/16∫∫(x+y)dxdy=∫∫2(u+1/2+v/2+1/8)du
你是想用极坐标的形式表示吧~令x=3rcosθ,y=4rsinθ,dxdy=(3)(4)rdrdθ=12rdrdθ∫∫dσ=∫(0-->2π)dθ∫(0-->1)12rdr=∫(0-->2π)12·r
被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
求时将不求的当作常数是要领.∫0-2∫0-2(x+y)dxdy=【注:先对y求积分,x视作为常数】∫0-2(xy+y²/2)Ⅰ0-2)dx=∫0-2(2x+2)dx=(x²+2x)
∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x
∫∫D|1-x²-y²|dxdy=∫∫D¹(1-x²-y²)dxdy+∫∫D²(x²+y²-1)dxdyD¹:
楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2
其实很简单,你只要看积分区域:1:如果该区域一个x对应了几个y,那么为x型区域;2:如果该区域一个y对应了几个x,那么为y型区域;3:如果一个区域既有x型又有y型,则需分开考虑.
关键是积分区域的处理! 另外膜拜一下一楼,这个题目也能用极坐标?
积分区域:y=0和y=√(2x-x²)围成的区域化为极坐标:∫dθ∫f(rcosθ,rsinθ)*rdr再问:图不是个半圆吗为什么不是∫再答:画图看看就知道了是第一象限的半圆
对,就是这个.算出来答案是1/4.
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2