y=arcsin(2t (1 t^2))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:18:39
y(t)=C*(-1)^t+1/3*2^t+1C为任意R前面是通解,后面是特解.主要是前面,由差分方程解得,y(t+1)+y(t)=0,特征值λ+1=0,λ=-1.所以.如果不知道差分方程是什么,就是
你开根号的时候没注意根号里的数的正负:(arcsinx)'=1/√(1-x^2)所以:arcsin[2t/(1+t^2)]‘=1/√{1-【2t/(1+t^2)】^2}*[2t/(1+t^2)]’你肯
x-1=(t+1)/(t-1)-1=2/(t-1)t-1=2/(x-1)t=(x+1)/(x-1)t^2+t+1=(x+1)^2/(x-1)^2+(x+1)/(x-1)+1=(3x^2+1)/(x-1
y=[arcsin√(x-1)]²y'=2•arcsin√(x-1)•[arcsin√(x-1)]'=2arcsin√(x-1)•1/√{1-[√(x-1
y=arcsin((1-x^2)^0.5)y'=(1-(1-x^2))^-(1/2)*(-2x)=(-2x)/((1-(1-x^2))^0.5)=(-2x)/((1-1+x^2)^0.5)=(-2x)
arcsin则-1
1、[(1-x²)/2]值域为(-无穷,0.5)y值域为【0,π/3】及【5π/3,4π】2、【0,2π】抢答时间有限不能写请详细过程
答案为2/(1+x^2)吧.由题得siny=2x/(1+x^2).两边同时对x求导(cosy)*dy/dx=2(1-x^2)/(1+x^2)^2cosy=根号下1-sin平方y.代入化简得dy/dx=
(sinx)'=cosx[(sinx)^(1/2)]'=(1/2)(sinx)^(-1/2)[arcsin(sinx)^(1/2)]'=1/(1-sinx)^(1/2)y'=(1/2)cosx*(si
令u=(1-x^2)/(1+x^2)然后用复合函数求导公式.最后结果倒是出人意料地简单:-2/(1+x^2)再问:该是-2x/(|x|(x^2+1))吧。。。昨天算起来很复杂就懒得化了。。。再答:你的
书上的图是自动调整了坐标间距的,那个间距不是你说的步距.步距是画图是图上每一个点之间的横坐标的间距,它是0.1.纵坐标的各点间间距是不一样的.图上坐标间距横坐标是1,纵坐标是0.2,这是由你横纵坐标的
y=arcsin√(1-x^2)y'=-x/(|x|√(1-x^2))∴dy=-xdx/(|x|√(1-x^2))当x>0dy=-dx/√(1-x^2)当x
∵x^2+x+1=(x+1/2)^2+3/4≥3/4∴3/4≤x^2+x+1≤1∴arcsin(3/4)≤arcsin(x^2+x+1)≤π/2∴y=arcsin(x^2+x+1)的值域是[arcsi
积法则+链式y'=x'[arcsin(x/2)]+x[arcsin(x/2)]'=arcsin(x/2)+x*[1/根号(1-(x/2)^2)]*(x/2)'=arcsin(x/2)+x/[2*根号(
arcsinx的导数是1/√(1-x²)也就是说x²再问:可t方>1,t方
.y=arcsinxy'=1/√1-x^2y'=(arcsin(1-2x))'=1/√1-(1-2x)^2=1/2√(x-x^2)再问:请问x的导数为什么是1?再答:公式啊再问:什么公式啊再答:幂函数
值域:由于函数在水平方向上发生了变化,但在垂直方向上没有发生位移所以函数的值域为y∈[-π/2,0)∪(0,π/2]
y'=f'(arcsin1/x)*(arcsin1/x)'=f'(arcsin1/x)*1/√(1-1/x^2)*(1/x)'=-f'(arcsin1/x)*1/√(1-1/x^2)*1/x^2
这是复合函数,y=arcsinu,u=x/2.由“复合函数求导法则”可得y'=[1/√(1-u²)]×(1/2)=(1/2)×1/√[1-(x/2)²]=1/√(4-x²
1,x>01-x^2≥0解出来求交集0<x≤12.arcsin是正弦函数反函数-1≤x-1/2≤1-1//≤x≤3/23.3-x≥0x≠0求交集x≤3且x≠0arctan是正切函数反函数