y=e的x次方过点(0,1)处的切线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:04:05
求导即可y'=(e^x)'=e^x令x=0得y‘=1故曲线过原点的切线斜率为1
1、y=lntanx,则dy=y'dx=[(tanx)'/tanx]dx=[(secx)^2/tanx]dx=dx/(sinxcosx).2、y=e^x,则y(n)=e^x.3、y=e^x,则y'=e
曲线y=(e的-2x次方)+1在点(0,2)处的切线因为y'=-2*e的-2x次方斜率=y'(0)=-2切线方程为:y-2=-2xy=-2x+2与x轴交点为(1,0)与y=x的交点为(2/3,2/3)
2具体可以求导…
求导函数y'=3^x*ln3;y'(0)=ln3;斜率为ln3
y=xe^x+2x+1,求导得:y’=e^x+xe^x+2切点(0,1)处的导数值就是斜率,x=0时,导数值是3,所以切线斜率是3,过点(0,1),∴切线方程式y=3x+1.
e^(x+y)-e^x+[e^(x+y)+e^y]•dy/dx=0[e^(x+y)+e^y]•dy/dx=e^x-e^(x+y)=e^x•(1-e^y)dy/dx=
设切线方程为:y=k(x+4),k为(x0,y0)(∈y=xe^x)处的切线斜率.y′=(1+x)e^x,切线方程为:y=[(1+x0)e^x0](x+4),(x0,y0)(∈y=xe^x)在切线上,
移项[exp(x+y)-exp(x)]dx=-[exp(x+y)+exp(y)]dy化简得{exp(x)/[1+exp(x)]}dx={exp(y)/[1-exp(y)]}dy积分得ln[1+exp(
分析:(1)将x=0,代入抛物线的解析式即可;(2)当b=0时,直线为y=x,解由y=x和y=x2+x-4组成的方程组即可求出B、C的坐标,再利用三角形的面积公式即可求出面积;(3)当b>-4时,△A
设曲线上切点p(a,b),则b=e^a;.1又因为y'=e^x,所以切线斜率k=y'(a)=e^a;所以切线方程y=(e^a)*x,又因为切点在切线上,所以b=(e^a)*a.2联立1和2得:a=1;
函数求导=(2x+2)e^x+(x^2+2x+k)e^x,将x=0代入,得斜率=2+k,过点(1,4)的切线方程是:y-4=(2+k)(x-1),将x=0代入原函数,得y=k,过点(0,k),斜率是2
f(x)=e^x*(ax+b),f(0)=b,f'(x)=e^x*(ax+b+a),依题意f'(0)=b+a=3,曲线y=f(x)在(0,b)处的切线:y=3x+b与直线y=3x+1重合,∴b=1,a
由题意,f'(x)=lnx/x,∴f(x)=1/2(lnx)^2+C又曲线过点(e,-1)∴C=-3/2即曲线方程为f(x)=1/2(lnx)^2-3/2
解题思路:设出E的坐标,用坐标表示三角形的面积,从而求出K;第二问利用根与系数的关系求解.解题过程:
f(1)=e^1-1-1=e-2f'(x)=e^x-1K=f'(1)=e^1-1=e-1所以切线方程是y-(e-2)=(e-1)(x-1)=(e-1)x-e+1y=(e-1)x-e+1+e-2=(e-
y=e^(ax)求导得:y'=e^(ax)*a那么过(0,1)的切线斜率是k=y'|(x=0)=e^0*a=a切线与直线x+2y+1=0垂直,则有:a*(-1/2)=-1所以,a=2
切线斜率为e^x0,又直线过(x0,e^x0)和(-1,0)两点,于是e^x0=e^x0/(x0+1).解得x0=0
(0,1)就在曲线上,所以是切点y'=e^xx=0,y'=1所以切线斜率是1,过(0,1)所以是x-y+1=0