y=sin(x y)的二阶导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:39:55
实际上先有一个微分dπy^2这里把πy^2看做一个以y为变量的函数f(y)欲求dπy^2/dx(这里有一个前提是导数是可以看做微分之商的)分母分子同乘dy,变为(dπy^2/dy)*(dy/dx)这时
sin(xy)+In(y-x)=x两边同时对x求导得cos(xy)·(xy)'+1/(y-x)·(y-x)'=1cos(xy)·(y+xy')+1/(y-x)·(y'-1)=1①当x=0时,sin0+
1)y|x=o当x=0时sin(0)-1/y-0=1得:y|x=0=-1(2)y'|x=osin(xy)-1/y-x=1两边对x求导:cos(xy)(y+xy')+y'/y^2-1=0当x=0时y=-
是把y看作关于x的函数.再问:不是很懂,给个步骤吧。谢谢。再答:1/y-x是(1/y)-x的意思,还是1/(y-x)?再问:1/(y-x)再答:把y看做x的复合函数,两边对x求导,得cos(xy)·(
两边求导得:cos(xy)*(y+xy')+1+y'=0y'[xcos(xy)+1]=-ycos(xy)-1所以,y'=-[ycos(xy)+1]/[xcos(xy)+1]
再答:隐函数高阶求导。再答:
e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))
将原方程两边微分得d[xe^y+sin(xy)]=0→e^ydx+xe^ydy+cos(xy)(ydx+xdy)=0→移项[xe^y+xcos(xy)]dy=-[e^y+ycos(xy)]dx整理→d
xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs
在y=0的地方(即x轴上的点),若是原点(0,0),由|sin(xy)/y|再问:好一个初等函数……有没有其他论证方式更严谨?再答:你还要什么样的严谨方式?这已经是够严谨的了。初等函数必是连续的,这个
设函数f(x,y)=sin(x+y),那么f(0,xy)=(sinxy)应该是sin0+sinsy=0+sinxy=sinxy再问:limsinxy\2x=()补充x→0,y→3另外一道题
cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]
应经求过导了先整体对cos求导,再对xy求导,根据乘法的求导规则就是y+xy'
limsin(xy)/x(x.y)->(0.2)=lim{[sin(xy)/xy]*y}=im[sin(xy)/xy]*(limy)(x.y)->(0.2)=1*2=2这里把(xy)看作一个整体,当(
y+xy'-cos(πy²)2πyy'=0y=[2πycos(πy²)-x]y'y'=y/[2πycos(πy²)-x]即:dy/dx=y/[2πycos(πy²
在方程中令x=0可得,0=lney(0)+1,从而可得,y(0)=e2将方程两边对x求导数,得:cos(xy)(y+xy′)=1x+e−y′y将x=0,y(0)=e2代入,有e2=1e−y′(0)e2
e^(x+y)+sin(xy)=1e^(x+y)*(1+y')+cos(xy)(y+xy')=0y'*[e*(x+y)+xcos(xy)]=-[ycos(xy)+e^(x+y)]y'=-[ycos(x
sin(xy)-ln((x+1)/y)+1=0对x求导有:(y+xy')cos(xy)-y/(x+1)·[y-(x+1)y']/y^2-y/(x+1)·(x+1)(-1/y^2)y'=0x=0代入有:
化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[