z=u²lnv u=x y v=3x-2y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:10:27
随机变量X~N(0,1),Y~U(0,1),Z~(5,0.5)且X、Y、Z相互独立,求随机变量U=(2X+3Y)(4Z-

U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,

z=f(x/y,y/x),其中f(u,v)关于u,v具有连续偏导数,求 偏导 z/x 偏导 z/y?

令u=x/y,v=y/x,偏导z/x=fu(u,v)du/dx+fv(u,v)dv/dx=fu(u,v)1/y-fv(u,v)y/x^2偏导z/y=fu(u,v)du/dy+fv(u,v)dv/dy=

设u=f(x,y,z)=xy^2z^3,期中z是方程x^2+y^2+z^2-3xyz=0所确定的x,y的函数,求u对下的

x^2+y^2+z^2-3xyz=0两边对x求偏导,2x+2z*dz/dx-3yz-3xydz/dx=0从中解得:dz/dx=(3yz-2x)/(2z-3xy)(1)同理:dz/dy=(3xz-2y)

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

多元函数微分 隐函数 函数z=z(x,u)由方程组x=f(u,v),y=g(u,v),z=h(u,v)所确定,求z对x的

偏z/偏x=(偏z/偏f)*f'x=偏z/偏f*1=偏z/偏f;偏z/偏u=(偏z/偏f)*(偏f/偏u)+偏g/偏u+偏h/偏u.

一道数学难题已知四个非负实数x,y,z,u,满足3x+2y+z=6,2x+y-3u=1,则S=6u-z+1的最大值为

z=6-3x-2y>=0;3μ=2x+y-1>=0;线性域为以(2,0),(0,3),(0,1),(0.5.0)为顶点的四边形.S=2*3μ-z+1=4x+2y-2-6+3x+2y+1=7x+4y-7

多元函数微分学 F(x,y,z,u)=xyz+u(x+y+z-a)

第一题是用的拉格朗日数乘法计算条件极值.即在条件a=x+y+z下的乘积xyz的极值.设参数为u,构造拉格朗日函数F(x,y,z,u)=xyz+u(x+y+z-a)分别对四元函数求偏导,使其为零,联立方

u=x(z+y) z=sin(x+y) 求二阶偏导数σ2u/σxσy

σu/σx=(z+y)+x(σz/σx+0)=z+y+xcos(x+y)σ2u/σxσy=σz/σy+1-xsin(x+y)=cos(x+y)+1-xsin(x+y)

u=f(x-y,y-z,t-z)

分别把x,y,z,t当做为之数,其余都是常数,求就行了再问:具体怎么做呢?麻烦写清楚些

已知x,y,z都不小于0,且满足3y+2z=3-x,3y+z=4-3x,若u=3x-2y+4z,求u的最大值 和最小值

∵3y+2z=3-x,3y+z=4-3x可得:z=2x-1,y=(5/3)(1-x)∴u=3x-2y+4z=3x-10/3+(10/3)x+8x-4=(43/3)x-22/3由x,y,z都不小于0,3

设全集U=z,M={x|x=2k,k∈z},N={x|x=3k,k∈z},则M∩(N相对于U的补集)为

N相对于U的补集={x|x=3k+1,或x=3k+2,k∈z}所以有:M∩(N相对于U的补集)={x|x=2k且x≠3m,k,m∈z}

设z=xyf(x+y),其中f(u)二阶可导,求Φz/Φx,Φz/Φy(偏导)

本题的解答,需要说明一下:1、因为函数f是x+y的函数,也就是复合关系:   f是u 的函数,而u=x+y;2、无论是对x求导,还是对y求导,都得先对u&nbs

设全集U=Z,A={x|x=3k,k∈Z},求CUA

CUA={x|x=3k+1或x=3k+2,k∈Z}

(1)设全集U={x∈Z|-1≤x≤3},A={x∈Z|-1

1)B={x∈Z|x²-x-2≤0}={x∈Z|-1≤x≤2}看到等于号了吗?那就可以取-12)画数轴,一个在左边,一个在右边,B可以等于1,那补集就不能等于1再问:第二小题还是不理解

已知全集U={X属于Z|0

U={1,2,3,4,5,6,7,8}1)CuA={1,3,4,5,6}CuB={1,2,4,8}

设z=ln(u平方+v),u=x-y平方,v=x平方y,求 偏导z/x 偏导 z/y?

∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z