z=x²y x y²的偏导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:46:57
若正数x,y满足2x+y-3=0,则x+2yxy的最小值为(  )

∵正数x,y满足2x+y-3=0,∴3=2x+y.∴x+2yxy=13(2x+y)(1y+2x)=13(5+2xy+2yx)≥13(5+22xy•2yx)=3,当且仅当x=y=1时取等号.则x+2yx

计算函数z=x²sin(xy)的偏导数∂z/∂x

=2x*sin(xy)+x^2*y*cosx题中的偏导数就是把y变成常数.详细步骤真没有.再问:是对的吧--我真是一点都不懂--毕业考试不过拿不到毕业证,求负责你说对我就这么背了再答:别背。真的要理解

设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数

G[x+z*y^(-1),y+z*x^(-1)]=0证明x*∂z/∂x+y*∂z/∂y=z-xy?Gz=(1/y)G1+(1/x)G2=LGx=G1-(

求函数z=(x+y)sin(x-y)的偏导数∂z/∂x,∂z/∂y

∂z/∂x只对x求导数,而把y看作一个常数,∂z/∂x=(x+y)'sin(x-y)+(x+y)sin(x-y)'=sin(x-y)+(x+y)cos(

求函数Z=x^xy的偏导数

Z=f'x(x,y)=xy*[x^(xy-1)]*yZ=f'y(x,y)=xy*[x^(xy-1)]*x再问:答案是Z=f'x(x,y)=yx^xy(lnx+1),Z=f'y(x,y)=x^(xy+1

求函数z=xy+x/y的偏导数

z=xy+x/y对x的偏导数=y+1/y对y的偏导数=x-x/y^2

设z=z(x,y)是方程x^2+z^2=ysin(z/x)确定的隐函数,求Z对x,y的偏导数

1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求

已知x/5=y/3,则(x/x+y)+(y/x-y)-(yxy/xxx-yxy)

y=3x/5原式=x/(x+3x/5)+(3x/5)/[x-3x/5]-(9x^3/25)/(x^3-9x^3/25)=8/3-3/2-9/16=29/48

求二元函数z=x^y的偏导数

求偏导时就是把其他变量当做常数.所以,对x的偏导为y*x^(y-1),对y的偏导是x^y*lnx.

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

偏导数的求二阶导.z=xy+u,u(x,y).那么偏导数^2 z/偏导数x*偏导数y等于多少.

不需要图,很简单的z=xy+u两边对x求导:∂z/∂x=y+∂u/∂x,两边对y求导:∂²z/(∂x∂y)

已知|3-y|+|x+y|=0,求x+yxy

|3-y|+|x+y|=0,且|3-y|≥0,|x+y|≥0,所以3-y=0,x+y=0,所以y=3,x=-3.所以x+yxy=-3+3-3×3=0-9=0.答:x+yxy的值为0.

求该函数的偏导数 z=e^x siny- 3(x^3) cosy

z=e^xsiny-3(x^3)cosyzx=e^xsiny-9(x^2)cosyzy=e^xcosy+3(x^3)siny

设x=cosΦcosθ y=cosΦsinθ确定函数z=(x,y)求偏导数z对x 的偏导数

x^2+y^2+z^2=cos^2φcoc^2Θ+cos^2φsin^2Θ+sin^2φ=1.F=x^2+y^2+z^2Fx=2xFz=2zz对x的偏导数=一Fx/Fz=一x/z.

z关于x的两次偏导数加上z关于y的两次偏导数再加上z关于t的一次偏导数,三个加起来等于零,求z

z/?x=3x^2-3y^2z/?y=3y^2-6xy^2z/?y等于?z/?x对y再求一次偏导也等于?z/?y对x再求一次偏导为-6y^2z/?x^2为?z/?x对x再求一次偏导为6x^2z/?y^

一道求偏导数的题设函数z=x√x^2+y^2,则偏导数∂z/∂x=?第二题

题目不太明白,后面先开根再平方,不就是x吗?请把原题直接贴出来吧.令u=x,v=√(x²+y²),则z=uv∂z/∂x=u∂v/∂x

z=y/f(x^2+y^2)的偏导数,分别对x、y求偏导

z=y/f(x²+y²),令u=x²+y²∂z/∂x=y·-1·[∂f(u)/∂u·∂(x²

Z=f(x+y,x-y) 求Z对X的偏导数和对y的偏导数

dz/dx=f'(x+y,x-y)dz/dy=f'(x+y,x-y)(-1)=-f'(x+y,x-y)