{an}中,an=2的n次方 3的n次方,且(an 1-tan)为GP,求t
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:29:18
法一:累加法.a(n+1)=an/3+1/2ⁿ⁺¹,两边同时乘以3ⁿ⁺¹.3ⁿ⁺¹a(n+1)=3
an=n/(n-1)×a(n-1)+2n×3^(n-2)∴an/n=a(n-1)/(n-1)+2×3^(n-2)------(1)a(n-1)/(n-1)=a(n-2)/(n-2)+2×3^(n-3)
a(1)=2^1-1=1,2^n-1=a(1)+a(2)+...+a(n),2^(n+1)-1=a(1)+a(2)+...+a(n)+a(n+1)=2^n-1+a(n+1),a(n+1)=2^(n+1
a(n+1)=2an+2^n,bn=an/2^(n-1),b(n+1)=a(n+1)/2^n,b1=a1/2^0=1a(n+1)/2^n=an/2^(n-1)+1,b(n+1)=bn+1,bn为首项为
(1)a(n+1)=2an+2^(n+1)等式两边同除以2^(n+1)a(n+1)/2^(n+1)=an/2ⁿ+1a(n+1)/2^(n+1)-an/2ⁿ=1,为定值a1/2=
an+1-an=3^n-nan-an-1=3^(n-1)-(n-1)……a2-a1=3^1-1累加,an+1-a1=3^n+3^(n-1)+……+3-[(n-1)+(n-2)+……+1](前为等比数列
an-3^(n+1)=2a(n-1)+3^n-3^(n+1)3^n-3^(n+1)=3^n-3*3^n=-2*3^n所以an-3^(n+1)=2a(n-1)-2*3^n=2[a(n-1)-3^n][a
n这是3^n吧.两边同时除以2的n+1次方,则a(n+1)/2^(n+1)=a(n)/2^n+(3/2)^n再用累加法:a2/2^2-a1/2=3/2a3/2^3-a2/2^2=(3/2)^2…………
令An=an/an-1则A1=a2/a1=23的5次方(1)A2=a3/a2=23的8次方(2)……An-1=an/an-1=23的3n-1次方(n-1)把上述n-1个等式左右分别相乘得:A1*A2*
an=(3n-2).3^(n+1)=9(n.3^n)-2.3^(n+1)Sn=an+a2+...+an=9[∑(i:1->n)i.3^i]-9(3^n-1)letS=1.3+2.3^2...+n.3^
an+1=an+2^nan+1-an=2^nan-an-1=2^n-1.a2-a1=2全部相加an+1-a1=2+4+.2^nan+1=2+2+4+...2^n=2^(n+1)an=2^n
an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1
a(n+1)/an=2^n则an/a(n-1)=2^(n-1)…………a2/a1=2^1相乘an/a1=2^[1+2+3+……+(n-1)]=2^[n(n-1)/2]a=1所以an=2^[n(n-1)
a(n+1)/(3an)=2a(n+1)/an=6an/a1=6^(n-1)an=6^(n-1)
an=an-1+(n-1)+2^(n-1)∴an-an-1=n-1+2^(n-1)同理an-1-an-2=n-2+2^(n-2).a2-a1=1+2上述公式相加有an-a1=1+2+...+n-1+2
An+1=An+2的n次方可得:an=a(n-1)+2^(n-1)a(n-1)=a(n-2)+2^(n-2)-------------a2=a1+2上述式子相加得an+a(n-1)+----+a2=a
(1)求a2,a3;a2=3^(2-1)+a1=3+1=4a3=3^(3-1)+a2=9+4=13(2)求证an=(3的n次方-1)/2an=3的n-1次方+an-1an-a(n-1)=3^(n-1)
证明:∵an+Sn=n²+2n-1,∴a(n+1)+S(n+1)=(n+1)²+2(n+1)-1则a(n+1)-an+S(n+1)-Sn=(n+1)²+2(n+1)-1-