∫(sinXcosx) (1 sin^4 X)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:45:19
∫[sinxcosx/(sinx+cosx)]dx=-1/4∫[dcos2x/(sinx+cosx)]=-1/4cos2x/(sinx+cosx)-1/4/∫[cos2x*(cosx-sinx)/(s
有2mol个Si—Si键硅晶体以平面网状排列,每五哥硅以正四面体排布这你可以在百度百科中找到每个硅以Si—Si键与四个硅相连接平均每个硅就有2mol个键,1molSi就有2molSi—Si键遇到这种问
以为Si为4价,所以每个Si周围有4个-,而每个-被两个Si公用,所以1mol晶体硅有2摩尔Si—Si
2mol,结构图和金刚石一样,每个Si周围有4个半键,加起来就是两mol了再问:金刚石我也不知道什么样o>_
Letu=1+sin(x)cos(x)=1+(1/2)sin(2x)anddu=cos(2x)dx→dx=du/cos(2x)So∫cos(2x)/(1+sin(x)cos(x))dx=∫1/udu=
由sin²x+cos²x=1得出的再问:���Ƕ��˸�2��ϵ��再答:��Ϊ֮ǰ��3cos²x再答:sin²x+3cos²x=sin²
f(x)=(sin4x+cos4x+sin2xcos2x)/(2-2sinxcosx)=[(sin2x+cos2x)^2-2sin2xcos2x+sin2xcos2x]/(2-2sinxcosx)=(
正解.引自吉米多维奇著《数学分析习题集》
的数字传递到cx中.这里在dat1中定义了‘abcdefghij’共10个字节长度的变量,而后在内存空间中紧接着就定义了dat2,所以dat2和dat1地址的差值就是dat1中字符变量的长度为10.第
sinx/cosx
∫dx/(sinxcosx)=∫dx/(tanx*cosx^2)=∫dtanx/tanx=ln|tanx|+C∫dx/(sinxcosx)=∫d2x/(sin2x)=∫csc2xd2x=ln|csc2
sinxcosx/(1+cosx∧2)dx=cox/(1+cosx∧2)dx=负的0.5*【1/(1+cos∧2)d(1+cos∧2)】然后就用∫1/mdm=㏑m不过此时的积分上下线变成了2和1,最后
1mol的Si中含有2molSi-Si键,1mol的SiO2中含有4molSi-O键.
方法一:∫1/(sinxcosx)dx=∫2/sin2xdx=∫csc2xd(2x)=ln|csc2x-cot2x|+C方法二:∫1/(sinxcosx)dx分子分母同除以cos²x=∫se
=(1/2)∫dx/sin2x=(1/4)ln|cot2x-cot2x|+C代入上下限即可再问:呃…第一步系数应该是2吧再答:哦。那就=(2)∫dx/sin2x=ln|cot2x-cot2x|+C
由(1+tanX)/(1-tanX)=3+2√2得tanX=√2/2((sinx)*2+√2sinxcosx-(cosx)*2)/((sinx)*2+2(cosx)*2)【分子分母同除以(cosx)*
∫(COS2X)/(1十SinXCOSX)dX=∫(1/2)/(1+sin2x/2)d(sin2x)=∫(1/2)/(1+u/2)du(u=sin2x)=∫1/(u+2)d(u+2)=ln|u+2|+
(1)∫[(sinxcosx)/(1+sin²x)]dx,d(1+sin²x)=(2sinxcosx)dx=∫[(sinxcosx)/(1+sin²x)*1/(2sinx
∫sin2xdx/(sinx+cosx)=∫cos(π/2-2x)dx/[√2cos(π/4-x)]=√2∫cos(π/4-x)dx-(1/√2)∫dx/cos(π/4-x)=√2sin(x-π/4)
∫sinxcosx/(1+sin^4x)dx=∫sinx/(1+sin^4x)d(sinx)=1/2*∫1/(1+(sin^2x)^2)d(sin^2x)=1/2*arctan(sin^2x)+C