∫Dx²y²dxdy,其中D={(x,y)|4x≥y²,x≤1}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:41:24
计算二重积分:1、∫∫[D]cos(x+y)dxdy,其中D由y=x,y=pai以及x=0所围成

∫∫[D]cos(x+y)dxdy=∫dx∫cos(x+y)dy=∫[sin(x+π)-sin2x]dx=[cosx+(1/2)cos2x]|=-2

设T1=∫∫(x+y)^2dxdy T2=∫∫(x+y)^3dxdy 其中D为(x-2)^2+(y-1)^2

T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ,其中D={(x,y)| x^2+y^2 =0}

1,在D上的二重积分∫∫f(x,y)dxdy的几何意义是,以D为底,以曲面z=f(x,y)为顶的曲顶柱体的体积,本题中根据被积函数和积分区域,可以看出这个积分表示球体x^2+y^2+z^2=1在第一卦

计算二重积分 ∫D∫(sinx/x)dxdy,其中D为由y=x,y=2x和x=1围成的平面区域

原式=∫_0^1▒〖(sinx/x)dx〗∫_x^2x▒〖dy=∫_0^1▒〖(sinx/x)*(2x-x)dx〗〗=∫_0^1▒〖(sinx)dx=-

用极坐标计算二重积分∫∫[D](6-3x-2y)dxdy=?其中,D:x^2+y^2

令x=rcosθ,y=rsinθ,则0<r<R,0<θ<2π.所以原积分=∫(0到2π)dθ∫(0到R)(6-3rcosθ-2rsinθ)rdr=∫(0到2π)[(3r^2-r^3cosθ-2/3×r

计算二重积分∫∫D dxdy/根号4-x²-y² 其中D是由圆周x²+y²=4围

原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.

计算二重积分:∫∫D cos(x+y)dxdy,其中D由y=x,y=π,x=0所围成的区域

∫∫_Dcos(x+y)dσ=∫(0→π)dy∫(0→y)cos(x+y)dx=∫(0→π)dy∫(0→y)cos(x+y)d(x+y)=∫(0→π)sin(x+y)|(0→y)dy=∫(0→π)[s

∫∫D|1-x²-y²|dxdy,其中D={(x,y)|x²+y²≤x,y≥0}

∵在区域D={(x,y)|x²+y²≤x,y≥0}中,1-x²-y²≥0∴∫∫|1-x²-y²|dxdy=∫∫(1-x²-y

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

计算∫∫e^(-y^2)dxdy 其中D是由y=x,y=1及y轴所围成的区域

先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-

计算∫∫D (x+6y)dxdy,其中D是由y=x,y=5x,x=1围成的区域.

∫∫D(x+6y)dxdy=∫dx∫(x+6y)dy=∫dx(xy+3y²)|=∫(5x²+75x²-x²-3x²)dx=∫(76x²)dx

二重积分求∫∫[y/(1+x^2+y^2)^(3/2)]dxdy 其中 D:0

化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/