∫e^2x sinx dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:35:30
楼上三位,一致对e^x情有独钟,他们都是对的.通常,这类题既有e^x又有sinx或cosx的积分题,一般的解法是:1、选定e^x,或选定sinx、cosx,就得“从一而终”,用分部积分的方法计算,&n
e……x+3e……-x+c望采纳再问:求详细再答:把这个式子分开,都是关于e的x次方的积分,这下会了吗再问:不会再答:这个式子可以化简为e^x-3e^-x这次会啦吗?
∫xsinxdx=-xcosx+sinx+C
原式=∫(1+2e^x)dx=∫dx+2∫e^xdx=x+2e^x+C
∫(π-->0)x·sinxd(x/2)=1/2·∫(π-->0)x·sinxdx=-1/2·∫(π-->0)xd(cosx)=-1/2·xcosx+1/2·∫(π-->0)cosxdx
∫xsinxdx=-∫xdcosx=-xcosx+∫cosxdx=-xcosx+sinx+C
用分部积分法做∫xsinxdx(u=x,v'=sinx,v=-cosx)=-xcosx-∫-cosxdx=-xcosx+sinx+C定积分从0到π/2=(0+1)-(0)=1
∫xsinxdx=[sinx-xcosx]上面是无穷大没有正负之分,下面是0=[sinx-xcosx]x为无穷大没有正负之分在x->±∞过程中,此定积分的值在波动中,振幅加大,振幅->±∞
分母应该是√(1-e^2x)吧令e^x=t,x=lnt,dx=1/tdt∫e^x/√(1-e^2x)dx=∫t/√(1-t²)•1/tdt=∫1/√(1-t²)dt=a
该题用凑微分法如下图计算.经济数学团队帮你解答,请及时采纳.
答:∫[(e^x)^2/(2+e^x)]dx=∫[e^x/(2+e^x)]d(e^x)=∫[(e^x+2-2)/(2+e^x)]d(e^x)=∫[1-2/(e^x+2)]d(e^x+2)=e^x-2l
∫e^2x*cose^xdx=∫e^x*cose^xd(e^x)=∫y*cosydy___________________y=e^x=∫ydsiny=y*siny-∫sinydy=y*siny+cos
∫xxsinxdx/2=-1/2∫x^2dcosx=-1/2[x^2cosx-∫cosxdx^2]=-1/2x^2cosx+∫xcosxdx=-1/2x^2cosx+∫xdsinx=-1/2x^2co
∫[(e^x)*(e^-x)+2e^x]dx=∫(1+2e^x)dx=∫1dx+2∫e^xdx=x+2e^x+C
令t=e^x,则原式化为:2∫dt/(t^2+9)=(2/3)∫d(t/3)/(1+(t/3)^2)=(2/3)arctan(t/3)=(2/3)arctan(e^x/3)
分部积分∫e^xsinxdx=∫sinxde^x=sinx*e^x-∫e^xdsinx=sinx*e^x-∫e^xcosxdx=sinx*e^x-∫cosxde^x=sinx*e^x-cosx*e^x
设u=x,v'=sinx则u'=1,v=-cosx则原积分∫(π/4,0)xsinxdx=⦗-xcosx⦘(π/4,0)-∫(π/4,0)-cosxdx=(-π/4)×(√
再问:还是不太懂啊,就是你最后一步,e^x-(-e^x)你是直接把x=1和x=0带进去的吗?那为什么不是+2而是-2?自学中,所以请见谅再答:理解,我也是自学党这里用了微积分基本定理:牛顿-