∫ln∨2xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:57:11
∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^
利用分部积分=xlnx-∫x*(1/x)dx=xlnx-x =-1 xlnx 在x=0处极限为0
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
(1)令x=sint,因x属于(-1,2),故t在(-pi/2,pi/2)内,且dx=costdt∫x^2/根号(1-x^2)dx=∫(sint)^2/cost×costdt=∫(sint)^2dt=
{f(x)d(lnx)={f(e^lnx)d(lnx)=f(e^x)+c,{ln(t+1)dt={ln(t+1)d(t+1)=={e^lnt*ln(t+1)dln(t+1)={e^ln(t+1)ln(
再问:再问:第三题怎么做
∫sin^3xcos^2xdx=-∫sin^2xcos^2xdcosx=-∫(1-cos^2x)*cos^2xdcosx=-∫(cos^2x-cos^4x)dcosx=(1/5)*cos^5x-(1/
原式=∫xsinx/cos^3(x)*dx=-∫x/cos^3(x)*d(cosx)=1/2∫xd(1/cos^2(x))=x/(2cos^2(x))-1/2∫dx/cos^2(x)=x/(2cos^
=(1/3)∫d(3x^2-1)/√(3x^2-1)=(2/3)√(3x^2-1)+C
答案是三分之二乘以x的二分之三次方+c
∫f(x)/xdx=ln[x+√(1+x²)]+Cf(x)/x=d/dx{ln[x+√(1+x²)]+C}=1/√(1+x²)f(x)=x/√(1+x²)---
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
用分部积分法,先把x^2放到dx里面然后分部积分再把dlnx变成1/xdx
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
你自己做的最后一步错了∫tanxd(tanx)=1/2tan²x+C本题另一个解法:∫sinx/cos³xdx=∫sec²xtanxdx=∫secxd(secx)=1/2
如果有用及时采纳再问:问下为什么前面要加负号再答:加符号就对换了积分的上下限。再问:哦,谢谢
再答:再答:第一个错了再问:不好意思,我把问题打错了,中间是除不是乘。您再看一眼,求指导!再答: