∫[(sinx cosx) √(sinx-cosx)] dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:11:21
求不定积分∫[sinxcosx/(sinx+cosx)]dx

∫[sinxcosx/(sinx+cosx)]dx=-1/4∫[dcos2x/(sinx+cosx)]=-1/4cos2x/(sinx+cosx)-1/4/∫[cos2x*(cosx-sinx)/(s

√3 sinxcosx+cos2x如何化简

原式=√3/2*sin2x+(1+cos2x)/2=√3/2*sin2x+1/2*cos2x+1/2=sin2xcosπ/6+cos2xsinπ/6+1/2=sin(2x+π/6)+1/2

已知函数f(x)=-√3sin^2x+sinxcosx

f(x)=-√3sin²x+sinxcosx=(1/2)*sin2x+(√3/2)*cos2x-√3/2=sin(2x+π/3)-√3/2所以函数f(x)的最小正周期是T=2π/2=π最大值

已知函数f(x)=3/2--3sin^2x--√3sinxcosx

f(x)=3/2-3sin^2x-√3sinxcosx=3/2-3*(1-cos2x)/2-(√3/2)*sin2x=(3/2)*cos2x-(√3/2)*sin2x=√3*[(√3/2)*cos2x

∫cos2x/(1+sinxcosx) dx 求详解.

Letu=1+sin(x)cos(x)=1+(1/2)sin(2x)anddu=cos(2x)dx→dx=du/cos(2x)So∫cos(2x)/(1+sin(x)cos(x))dx=∫1/udu=

求不定积分符号由s代替,s(dx)/(sinxcosx)

s(dx)/(sinxcosx)=s(sin²x+cos²x)/(sinxcosx)dx=s(sinx/cosx)+(cosx/sinx)dx=s(sinx/cosx)dx+s(c

化简y=2(cosx)^2+2√3sinxcosx

y=2(cosx)^2+2√3sinxcosx=cos2x+1+2√3sinxcosx=cos2x+√3sin2x+1=2[1/2cos2x+√3/2sin2x)+1=2sin(2x+π/6)+1

已知函数f(x)=-√3sin^2x+sinxcosx+√3/2

f(x)=-√3sin2x+1/2sin2x+√3/2=(-√3+1/2)sin2x+√3/2因为sin2x的最小正周期为2π/2=π因为-√3+1/2小于0所以单调递增区间为(π/4+kπ,3π/4

不定积分!∫sinxcosx/(sinx+cosx)dx=?

正解.引自吉米多维奇著《数学分析习题集》

已知(sinx+cosx)/(sinx-cosx)=2.求①tanx ②sin2x-2sinxcosx/cos2x-3s

①(sinx+cosx)/(sinx-cosx)=2(sinx+cosx)=2*(sinx-cosx)sinx+cosx=2sinx-2cosxsinx=3cosxtanx=sinx/cosx=3②(

∫1/sinxcosx dx的不定积分 不知道我算的对不 ∫1/sinxcosx dx=2∫1/sin2x dx=2∫c

∫dx/(sinxcosx)=∫dx/(tanx*cosx^2)=∫dtanx/tanx=ln|tanx|+C∫dx/(sinxcosx)=∫d2x/(sin2x)=∫csc2xd2x=ln|csc2

凑微分法求定积分∫(上限 派/2,下限0)sinxcosx/(1+cosx^2)dx

sinxcosx/(1+cosx∧2)dx=cox/(1+cosx∧2)dx=负的0.5*【1/(1+cos∧2)d(1+cos∧2)】然后就用∫1/mdm=㏑m不过此时的积分上下线变成了2和1,最后

∫dx/sinxcosx 答案为lntanx+C,

方法一:∫1/(sinxcosx)dx=∫2/sin2xdx=∫csc2xd(2x)=ln|csc2x-cot2x|+C方法二:∫1/(sinxcosx)dx分子分母同除以cos²x=∫se

求不定积分∫sinxcosx/cosx^5 dx

∫sinxcosx/cos^5dx=∫cosx/cosx^5dcosx=∫1/cosx^4dcosx=∫cosx^-4dcosx=-1/3cosx^-3+C

求定积分∫1/sinxcosx dx(上限π/3,下限π/4),也如图,

=(1/2)∫dx/sin2x=(1/4)ln|cot2x-cot2x|+C代入上下限即可再问:呃…第一步系数应该是2吧再答:哦。那就=(2)∫dx/sin2x=ln|cot2x-cot2x|+C

已知函数∫(x)=2√3sinxcosx+2cos2x-1(x∈R)

1f(x)=2√3sinxcosx+2cos2x-1=√3sin2x+cos2x=2sin(2x+π/6)最小正周期T=2π/2=π∵x∈[0,π/2]∴2x+π/6∈[π/6,7π/6]∴2x+π/

∫(COS2X)/(1十SinXCOSX)dX=

∫(COS2X)/(1十SinXCOSX)dX=∫(1/2)/(1+sin2x/2)d(sin2x)=∫(1/2)/(1+u/2)du(u=sin2x)=∫1/(u+2)d(u+2)=ln|u+2|+

1.∫(sinxcosx)/(1+sin^2x)dx

(1)∫[(sinxcosx)/(1+sin²x)]dx,d(1+sin²x)=(2sinxcosx)dx=∫[(sinxcosx)/(1+sin²x)*1/(2sinx

∫sinxcosx/(sinx+cosx)dx

∫sin2xdx/(sinx+cosx)=∫cos(π/2-2x)dx/[√2cos(π/4-x)]=√2∫cos(π/4-x)dx-(1/√2)∫dx/cos(π/4-x)=√2sin(x-π/4)

∫sinxcosx/(1+sin^4x)dx

∫sinxcosx/(1+sin^4x)dx=∫sinx/(1+sin^4x)d(sinx)=1/2*∫1/(1+(sin^2x)^2)d(sin^2x)=1/2*arctan(sin^2x)+C