∫∫zds,其中∑为抛物面z=2-
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:17:54
马鞍面的方程为X2/a2-Y2/b2=z,和Z=XY是不同的;你可以通过用X=a,Y=b,Z=c(此处a,b为任意数)去截取,这个图形最主要的特点是XY=c,要靠想象的,自己很难画出来,除非有现成的工
考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ
应该是柱坐标吧,极坐标是对于二位图形的.V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2)/3所围成的立体,也就是上面是球面,下面是抛物面.故z的范围为(x^2+y^2)/3≤z≤√(4
答:s=∫∫u(x,y,z)sqrt(1+(dz/dx)^2+(dz/dy)^2)dxdy=∫∫1/2(x^2+y^2)sqrt(1+x^2+y^2)dxdy=∫∫1/2r^2sqrt(1+r^2)r
P=y-zQ=0R=x+y+z∂P/∂x=0∂Q/∂y=0∂R/∂z=1∫∫(x+y+z)dxdy+(y-z)dydz=∫∫∫(
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
两种画法1ContourPlot3D函数,画等值面ContourPlot3D[x*y-z==0,{x,-2,2},{y,-2,2},{z,-4,4}]2Plot3D函数,直接画,但是要用点技巧,注意如
补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-
圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2
Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)
dS=√(1+4x^2+4y^2)dxdy,投影:x^2+y^2《1I=∫∫1/(x^2+y^2+(x^2+y^2)^2)*√(1+4x^2+4y^2)dxdy+∫∫1/(x^2+y^2+1)*dxd
R=x^2zRz=x^2由高斯公式:I=∫∫x2zdxdy=∫∫∫x^2dxdydz(xoy平面的投影D:x^2+y^2
换算成柱坐标方程抛物面z=x^2+y^2为z=ρ^2;平面2x-2y-z=1为z=2ρ(cosθ+sinθ)-1它们的交线为ρ^2=2ρ(cosθ+sinθ)-1→cosθ+sinθ=(1/2)(ρ+
平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的
先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0
∫∫√(1+4z)dS为第一类曲面积分,Z对x,y求导Z`x=2xZ`y=2y1+Z`x^2+Z`y^2=1+4x^2+4y^2dS=√1+4x^2+4y^2dxdy∫∫(√1+4(x2+y2)√1+
z=2-(x^2+y^2)z'x=-2xz'y=-2ydS=√(1+4x^2+4y^2)dxdy,∑在xoy平面的投影x^2+y^2=2A=∫∫√(1+4x^2+4y^2)dxdy(下面用极坐标=∫(
你列的算式基本上是对的,但是计算过程中有错误,结果确实是1/180.详细过程如下: