作业帮 > 数学 > 作业

已知P为△ABC内一点,向量PA+2向量PB+3向量PC=向量0,则S△PAB:S△PBC:S△PAC=( )

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 10:01:33
已知P为△ABC内一点,向量PA+2向量PB+3向量PC=向量0,则S△PAB:S△PBC:S△PAC=( )
△PAB、△PBC、△PAC的面积之比S1:S2:S3
如图:延长PB到B',使PB'=2PB, 延长PC到C',使PC=3PC'
则 PA+PB'+PC'=0, P是ΔAB'C'的重心,则SΔPAB'=SΔPAC'=SΔPB'C'=k
S1=1/2*SΔPAB'=1/2*k,   S3=1/3*SΔPAC'=1/3*k
S2=1/2*PB*PC*sin∠BPC
=1/2*1/2PB'*1/3PC'sin∠BPC
=1/6**1/2PB*'PC'sin∠BPC
=1/6*SΔPB'C'
=1/6*k
故 S1:S2:S3=(1/2):(1/6):(1/3)=3:1:2