三角函数(三角函数的恒等变形)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 20:35:09
var SWOC = {}; SWOC.tip = false; try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?qid=192778")}catch(o){if(!oldalert){var oldalert=true;var sys={};var ua=navigator.userAgent.toLowerCase();var s;(s=ua.match(/msie ([\d.]+)/))?sys.ie=s[1]:0;if(!sys.ie){alert("因浏览器兼容问题,导致您无法看到问题与答案。请使用IE浏览器。")}else{SWOC.tip = true;/*if(window.showModalDialog)window.showModalDialog("include\/addsw.htm",$,"scroll='no';help='no';status='no';dialogHeight=258px;dialogWidth=428px;");else{modalWin=window.open("include\/addsw.htm","height=258px,width=428px,toolbar=no,directories=no,status=no,menubar=no,scrollbars=no,resizable=no ,modal=yes")}*/}}}
解题思路: 掌握三角函数的基本关系及倍角公式
解题过程:
证明:
左边=(3-4cos2A+2cos22A-1)/(3+4cos2A+2cos22A-1)
=(2-4cos2A+2cos22A)/(2+4cos2A+2cos22A)
=(1-2cos2A+cos22A)/(1+2cos2A+cos22A)
=(1-cos2A)2/(1+cos2A)2
=[1-(1-2sin2A)]2/[1+(2cos2A-1)]2
=(2sin2A)2/(2cos2A)2
=(2sin2A/2cos2A)2
=(sin2A/cos2A)2
=(tan2A)2
=tan4A
=右边
所以,等式成立
最终答案:略
解题过程:
证明:
左边=(3-4cos2A+2cos22A-1)/(3+4cos2A+2cos22A-1)
=(2-4cos2A+2cos22A)/(2+4cos2A+2cos22A)
=(1-2cos2A+cos22A)/(1+2cos2A+cos22A)
=(1-cos2A)2/(1+cos2A)2
=[1-(1-2sin2A)]2/[1+(2cos2A-1)]2
=(2sin2A)2/(2cos2A)2
=(2sin2A/2cos2A)2
=(sin2A/cos2A)2
=(tan2A)2
=tan4A
=右边
所以,等式成立
最终答案:略