已知等腰三角形ABC中,AB/BC =3/2 ,⊙O是△ABC的内切圆,⊙O1与⊙O外切,切分别与两腰AB、AC相切
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:30:24
已知等腰三角形ABC中,AB/BC =3/2 ,⊙O是△ABC的内切圆,⊙O1与⊙O外切,切分别与两腰AB、AC相切
(1)求cosB的值,(2)设⊙O与⊙O1的半径分别为R和r1,求R /r1 的值,(3)如果再做⊙O2使它与⊙O1外切.切分别与两腰AB、AC相切,并设它的半径为r2,那么r1/r2 的值是多少?
(1)求cosB的值,(2)设⊙O与⊙O1的半径分别为R和r1,求R /r1 的值,(3)如果再做⊙O2使它与⊙O1外切.切分别与两腰AB、AC相切,并设它的半径为r2,那么r1/r2 的值是多少?
给个思路:(1)因为三角形等腰,所以所要的圆的圆心都在AD上(AD是BC边上的高).又因ABD是直角三角形且AB/BC=3/2可设AB=3,BC=2,则BD=BC=1,AD=根号下8.(2)作OE,O1F分别垂直于AC,由重心O可知AD=3DO,此时用相似三角形求比值,这一步注意点解,容易出错,[O1A=AD-2r-r1](3)第二题能解,比题就简单了,只是费点事.
已知等腰三角形ABC中,AB/BC =3/2 ,⊙O是△ABC的内切圆,⊙O1与⊙O外切,切分别与两腰AB、AC相切
如图,在边长为l的等边△ABC中,圆O1为△ABC的内切圆,圆O2与圆O1外切,且与AB,BC相切,…,圆On+1与圆O
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.
切线证明已知△ABC为等腰三角形,O是底边BC的中点,圆O与腰AB相切于点D.求证:AC与圆O相切
证明:如图所示,已知△ABC为等腰三角形,O是底边BC的中点,⊙O与腰AB相切于点D.求证:AC与⊙O也相切.
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.
很简单的应用题 有分已知△abc是等腰三角形,o是底边bc的中点.圆o与腰ab相切于点d,求证ac与点o也相切把辅助线也
1道关于角的题已知O为等腰三角形ABC底边BC的中点 圆O与AB相切与D求证AC与圆O相切
圆的综合练习题1.如图,△ABC中,AB=AC,O是BC的中点,以O为圆心的圆与AB相切于点D.求证:AC是⊙O的切线.
1、已知三角形abc为等腰三角形 o是底边bc中点 圆o与腰ab相切于d 证ac是圆o切线
如图,在三角形ABC中,AB=AC,cosB=3分之1,圆O是三角形ABC的内切圆,圆A与圆O外切.求rA与ro之比为2
如图所示,在△ABC中,AB=AC,内切圆○O与边BC、AC、AB、分别相切于D、E、F