抽屉原理的题小红家的杏子熟了,她把一些杏子分成了几份,准备送给她的邻居尝尝.她发现任意选出5堆,其中至少有两堆杏子数之差
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 21:35:22
抽屉原理的题
小红家的杏子熟了,她把一些杏子分成了几份,准备送给她的邻居尝尝.她发现任意选出5堆,其中至少有两堆杏子数之差是4的倍数,你能说说他的结论对吗?为什么?
小红家的杏子熟了,她把一些杏子分成了几份,准备送给她的邻居尝尝.她发现任意选出5堆,其中至少有两堆杏子数之差是4的倍数,你能说说他的结论对吗?为什么?
其实这是很好找的,举个例子:
“任意367个人中,必有生日相同的人.”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套.”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同.”
......
大家都会认为上面所述结论是正确的.这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理.它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西.”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日.这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里.在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双.任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同.这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里.
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西.”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数.”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数.
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西.”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用.许多有关存在性的证明都可用它来解决.
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识.”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人.如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线.考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种.根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色.如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识.不论哪种情形发生,都符合问题的结论.
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论.这些结论构成了组合数学中的重要内容-----拉姆塞理论.从六人集会问题的证明中,我们又一次看到了抽屉原理的应用
“任意367个人中,必有生日相同的人.”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套.”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同.”
......
大家都会认为上面所述结论是正确的.这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理.它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西.”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日.这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里.在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双.任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同.这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里.
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西.”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数.”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数.
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西.”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用.许多有关存在性的证明都可用它来解决.
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识.”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人.如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线.考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种.根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色.如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识.不论哪种情形发生,都符合问题的结论.
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论.这些结论构成了组合数学中的重要内容-----拉姆塞理论.从六人集会问题的证明中,我们又一次看到了抽屉原理的应用
抽屉原理的题小红家的杏子熟了,她把一些杏子分成了几份,准备送给她的邻居尝尝.她发现任意选出5堆,其中至少有两堆杏子数之差
小红家杏子熟了,把杏子分成几堆,发现任意选出5堆,其中至少有两堆杏子个数差是4的倍数,结论正确吗,为什么
小红将杏子分成几份,任意选5堆,至少有两堆杏子的个数差是4的倍数,她的结论对吗?为什么?
有许多小朋友在沙堆上玩耍,他们把沙堆分成了许多堆,其中有1个小朋友发现从沙堆中任意选出6堆,其中至少有两堆沙堆之差是5的
1.一些孩子在沙滩上玩耍,他们把石子堆成许多堆.其中有一个孩子发现从石子堆中任意选出6堆,其中至少有两堆石子数之差是5的
一些孩子在河滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数
把一些海洋球分成许多堆.其中有一个孩子发现,从海洋球堆中任意选出六堆,其中至少有两堆海洋球数之差...
一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现,从石子堆中任意选出五堆,其中至少有两堆石子数之差是4的倍
把球分成几堆其中一人发现从球堆中任意选出六堆其中至少有两堆球数之差是5的倍数他的结论对吗为什么
一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中一个孩子发现从石子堆中任意选出6堆,其中至少有两堆石子数的差是5的倍数,
一些孩子在海洋球里玩耍,他们把海洋球分成许多堆,其中有一个孩子发现,从海洋球堆中任意选出六堆,其中至少有两堆海洋球数之差
孩子把石子堆成许多堆,发现石子堆中任意选六堆其中至少有两堆石子数之差是5的倍数,对么?为什么?