已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.求{bn}通项公式
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:59:09
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.求{bn}通项公式
a(n+1)+b(n+1)=1,b(n+1)=(1-an)/(1-an²)=1/(1+an),a(n+1)+1/(1+an)=1,
a(n+1)an+a(n+1)+1=1+an,a(n+1)an+a(n+1)=an,1/a(n+1)-1/an=1,数列{1/an}为等差数列,公差为1,首项为4,1/an=4+n-1=n+3,an=1/(n+3),b(n+1)=1/(1+an),b(n+1)=1/[1+1/(n+3)]=(n+3)/(n+4),则{bn}通项公式:bn=(n+2)/(n+3).
a(n+1)an+a(n+1)+1=1+an,a(n+1)an+a(n+1)=an,1/a(n+1)-1/an=1,数列{1/an}为等差数列,公差为1,首项为4,1/an=4+n-1=n+3,an=1/(n+3),b(n+1)=1/(1+an),b(n+1)=1/[1+1/(n+3)]=(n+3)/(n+4),则{bn}通项公式:bn=(n+2)/(n+3).
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.求{bn}通项公式
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式
数列an中,a1=4,an+1=(3an+2)/(an+4),bn=an-1/an+2,求bn通项公式
已知数列an中,a1=1,an+1=5/2-1/an,bn=1/an-2,求数列bn的通项公式
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
数列an及正项数列bn满足:a1=0.5,a(n+1)=1除以1+bn,an+bn=1,求bn的通项公式,比较ln(1+
已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式
已知数列(An)中,A1=1/3,AnAn-1=An-1-An(n>=2),数列Bn满足Bn=1/An,求数列Bn的通项