已知想,x,y,z为三个不相等的实数,且x+1/y =y+1/z=z+1/x,求证:x^2y^2z^2=1
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 02:00:41
已知想,x,y,z为三个不相等的实数,且x+1/y =y+1/z=z+1/x,求证:x^2y^2z^2=1
x+1/y=y+1/z=z+1/x
同时都乘以xyz,得
xxyz+xz=xyzy+xy=xyzz+yz
由 xxyz+xz=xyzy+xy
得 xyz(x-y)=x(y-z)……(1)
由 xyzy+xy=xyzz+yz
得 xyz(y-z)=y(z-x)=-y(x-z)……(2)
由 xxyz+xz=xyzz+yz
得 xyz(x-z)=z(y-x)=-z(x-y)……(3)
(1)(2)(3)相乘得
(xyz)^3=xyz
x≠y≠z
xyz≠0
(xyz)^2=1
即x^2y^2z^2=1
同时都乘以xyz,得
xxyz+xz=xyzy+xy=xyzz+yz
由 xxyz+xz=xyzy+xy
得 xyz(x-y)=x(y-z)……(1)
由 xyzy+xy=xyzz+yz
得 xyz(y-z)=y(z-x)=-y(x-z)……(2)
由 xxyz+xz=xyzz+yz
得 xyz(x-z)=z(y-x)=-z(x-y)……(3)
(1)(2)(3)相乘得
(xyz)^3=xyz
x≠y≠z
xyz≠0
(xyz)^2=1
即x^2y^2z^2=1
已知想,x,y,z为三个不相等的实数,且x+1/y =y+1/z=z+1/x,求证:x^2y^2z^2=1
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1
已知X,Y,Z为3个互不相等的实数,且X+1/Y=Y+1/Z=Z+1/Z求证(xyz)^2=1
已知x.y.z是三个不相等的实数,且x+1/y=y+1/z=z+1/x,求x^2y^2z^2=1
已知X,Y,Z为三个互不相等的数,且X+ 1/Y =Y+ 1/Z = Z+ 1/X.求证:(XYZ)^2 = 1
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
已知实数xyz满足x/y+z+y/z+x+z/x+y=1求x^2/y+z+y^2/z+x+z^2/x+y的值
x,y,z为实数 且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+z-2y)^2+(x+y
x,y,z为实数且(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-
已知x,y,z为非负实数,x+y+z=1,求证:
已知非零的实数x,y,z满足2^x=5^y=10^z,求证1/x+1/y=1/z?
已知实数x,y,z满足x/(y+z)+y/(z+x)+z/(x+y)=1,求x2/(y+z)+y2/(z+x)+z2/(