若函数f(x)在负无穷到正无穷上连续,当x趋向负无穷时和x趋向正无穷时f(x)的极限都存在,则函数f(x)一致连续.
若函数f(x)在负无穷到正无穷上连续,当x趋向负无穷时和x趋向正无穷时f(x)的极限都存在,则函数f(x)一致连续.
证明:若f(x)在负无穷到正无穷内连续,且当x趋于无穷时f(x)的极限存在,则f(x)必在负无穷到正无穷内有界.
一个数学有界性问题举个例子,f(x)当x趋向正无穷时等于A,当x趋向负无穷时等于负无穷,该函数在实数域上连续,请问它时有
已知函数f(x)是定义域在(负无穷到正无穷)上的偶函数,当x属于(负无穷到0)时,f(x)=x-x的4次方,当x属于(0
设f(x)在(负无穷,正无穷)上连续,且f(x)极限存在,证明f(x)为有界函数
函数趋向正无穷或负无穷时,为什么极限不存在?x趋向无穷时函数趋向无穷也算极限不存在么?当左右极限
1.写出f(x)函数,当x趋向于负无穷时,极限的定义
设函数f[x]是定义在(负无穷,正无穷)上的增函数,
数学分析连续性证明证明:已知函数f(x)在[a,正无穷)上一致连续,且当x→正无穷时 f(x)极限为c,如果已知f(a)
已知函数f(x)的定义在(负无穷,正无穷)上的奇函数,当X属于(负无穷,0)时,F(X)=x-x的四次方,则当x>0,
高数证明题证明:若f(x)在实数范围内连续,且当x趋向于正无穷时f(x)极限存在,则f(x)比在实数范围内有界.
高等数学一题求助设函数y=f(x)在负无穷到正无穷上连续且有