直线Y=-x+1与x轴交于点A,与Y轴交于点B,P(a,b)为双曲线Y=1/2x(x大于0)上的一点,PM垂直X轴于M,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 03:30:51
直线Y=-x+1与x轴交于点A,与Y轴交于点B,P(a,b)为双曲线Y=1/2x(x大于0)上的一点,PM垂直X轴于M,交AB于E,PN垂直Y轴于N,交AB于F.
1,直接写出用含a,b的代数式表示E、F两点的坐标及三角形EOF的面积.
2,求证 三角形AOF相似于三角形BEO
3,当P在曲线上移动时,三角形OEF随之变动,那么三角形OEF的三个内角中,是否也都在变动呢?若有保持大小不变的角,求出它的大小,若没有,说明理由.
看题应该可以画出图的.
65765776756你不会干嘛回答呀 零回答的问题才会有人进啊= =
1,直接写出用含a,b的代数式表示E、F两点的坐标及三角形EOF的面积.
2,求证 三角形AOF相似于三角形BEO
3,当P在曲线上移动时,三角形OEF随之变动,那么三角形OEF的三个内角中,是否也都在变动呢?若有保持大小不变的角,求出它的大小,若没有,说明理由.
看题应该可以画出图的.
65765776756你不会干嘛回答呀 零回答的问题才会有人进啊= =
容易求得A(1,0),B(0,1)
∵P(a,b)在y=(1/2)x上,∴2ab=1,于是(√2)b:1=1:(√2)a
1.显然有E(a,1-a),F(1-b,b)
∵△ABO中,OA=OB=1,∠AOB=90º,AB=√2,
作OD⊥AB于D,则OD=(√2)/2,利用两点距离公式易得EF=(√2)(a+b+1)
三角形EOF的面积=(1/2)OD·EF=(1/2)(a+b-1)
2.在△AOF与△BEO中,∠FAO=45º=∠EBO
∵AM=1-a,∴AE=(1-a)√2,BE=√2-(1-a)√2=(√2)a
类似可得 AF=(√2)b
∴AF:BO=(√2)b:1=1:(√2)a=AO:BE
∴ △AOF∽△BEO
3.∵∠BEO是△AEO的外角,∴∠BEO=∠EAO+∠AOE=45º+∠AOE
∵ △AOF∽△BEO ∴∠AOF=∠BEO
∴∠EOF=∠AOF-∠AOE=∠BEO-∠AOE=45º
就是说,△OEF中,∠EOF大小不变,始终等于45º.
∵P(a,b)在y=(1/2)x上,∴2ab=1,于是(√2)b:1=1:(√2)a
1.显然有E(a,1-a),F(1-b,b)
∵△ABO中,OA=OB=1,∠AOB=90º,AB=√2,
作OD⊥AB于D,则OD=(√2)/2,利用两点距离公式易得EF=(√2)(a+b+1)
三角形EOF的面积=(1/2)OD·EF=(1/2)(a+b-1)
2.在△AOF与△BEO中,∠FAO=45º=∠EBO
∵AM=1-a,∴AE=(1-a)√2,BE=√2-(1-a)√2=(√2)a
类似可得 AF=(√2)b
∴AF:BO=(√2)b:1=1:(√2)a=AO:BE
∴ △AOF∽△BEO
3.∵∠BEO是△AEO的外角,∴∠BEO=∠EAO+∠AOE=45º+∠AOE
∵ △AOF∽△BEO ∴∠AOF=∠BEO
∴∠EOF=∠AOF-∠AOE=∠BEO-∠AOE=45º
就是说,△OEF中,∠EOF大小不变,始终等于45º.
直线Y=-x+1与x轴交于点A,与Y轴交于点B,P(a,b)为双曲线Y=1/2x(x大于0)上的一点,PM垂直X轴于M,
如图,直线y=-x+1与x轴交于点A,与y轴交于点B.P(a,b)为双曲线y=1/(2x) x>0上的一点
已知直线Y=1/2X+2与X轴交于点A,与Y轴交于点B,与双曲线Y=M/X交于点C,CD垂直X轴于D,
如图,直线y=-1/2x+2交x轴于A点,交y轴于B点,点P为双曲线y+k/x(x>0)上一点,且PA=PB,
直线y=x+m与双曲线y=m/x在第一象限交与点A,与x轴交与点c,AB垂直于x轴,垂足为B且三角形AOB面积为1
如图,已知直线L1:y=/2x+1与x轴交于点A,过点A的另一直线L2与双曲线y=-8/x(x>0)相交于点B(2,m)
过双曲线x^2/a^2 -y^2/b^2=1的右焦点F(c,0)的直线交双曲线于点M N,交y轴于P点,则有PM/MF
已知直线y1=x+m与x轴,y轴分别交于A、B,与双曲线Y2=k/x(x>0)分别交于点C,D,且C点的坐标为(-1,2
如图,已知点A.B在双曲线y=k/x(x>0)上,AC垂直x轴于点C,BD垂直y轴于点D,AC与BD交于点p,p是AC的
如图:直线y=1/5 x-1与x轴分别相交于B、A,点M为双曲线y=k/x(x大于0)上一点,若△AMB是以AB为斜边的
如图,直线Y=KX+2K(K不等于0)与X轴交于点B,与双曲线y=(m+5)x^(2m+1)交于点A.C,其中点A在第一
如图所示,直线L1:y=3x+3与x轴交于B点,与直线L2交于y轴上一点A,且L2与x轴的交点为C(1,0) (1)