如图,在平面直角坐标系中,矩形ABCO的面积为15,且OA=OC+2,E为BC的中点,以OE为直径的⊙O′交y轴于D点,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 22:59:00
如图,在平面直角坐标系中,矩形ABCO的面积为15,且OA=OC+2,E为BC的中点,以OE为直径的⊙O′交y轴于D点,过D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小亮在解答本题时,发现△AOE是等腰三角形,且△AOE的面积是四边形ABCO面积的一半.由此,他根据自己过去解题的实践断定:“直线BC上一定存在除点E以外的P点,使△AOP既是等腰三角形,又和△AOE的面积相等”.你同意他的断言吗?若同意,请你求出所有满足上述条件的点P的坐标,若不同意,请你说明理由.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小亮在解答本题时,发现△AOE是等腰三角形,且△AOE的面积是四边形ABCO面积的一半.由此,他根据自己过去解题的实践断定:“直线BC上一定存在除点E以外的P点,使△AOP既是等腰三角形,又和△AOE的面积相等”.你同意他的断言吗?若同意,请你求出所有满足上述条件的点P的坐标,若不同意,请你说明理由.
(1)∵OA•OC=15,OA=OC+2,
∴OC(OC+2)=15,
解得OC=3或OC=-5(负值舍去).
∴OA=5,OC=3.
(2)证明:∵OE为⊙O′的直径,交y轴于D点,
∴∠ODE=90°.
∵四边形ABCO是矩形,
∴∠OAB=∠AOC=90°.
∴DE∥AB∥OC.
又∵BE=CE,
∴AD=OD,
又O′D=O′O=O′E,
∴O′D∥AE.
又DF⊥AE,
∴O′D⊥DF.
∴DF为⊙O′的切线.
(3)同意;①AO=AP时,P1(3,9),P2(3,1);
②AO=PO时,P3(3,4),P4(3,-4).
∴OC(OC+2)=15,
解得OC=3或OC=-5(负值舍去).
∴OA=5,OC=3.
(2)证明:∵OE为⊙O′的直径,交y轴于D点,
∴∠ODE=90°.
∵四边形ABCO是矩形,
∴∠OAB=∠AOC=90°.
∴DE∥AB∥OC.
又∵BE=CE,
∴AD=OD,
又O′D=O′O=O′E,
∴O′D∥AE.
又DF⊥AE,
∴O′D⊥DF.
∴DF为⊙O′的切线.
(3)同意;①AO=AP时,P1(3,9),P2(3,1);
②AO=PO时,P3(3,4),P4(3,-4).
如图,在平面直角坐标系中,矩形ABCO的面积为15,且OA=OC+2,E为BC的中点,以OE为直径的⊙O′交y轴于D点,
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交X轴于D点
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,
如图在平面直角坐标系中,矩形ABCO的边OA=5,OC=3,E为BC的中点,以OE为直径的○o’交x轴于D点,过点D作D
矩形ABCO的面积为10,OA比OC大3,E为BC的中点,以OE为直径的⊙O'交x 轴于D,DF⊥AE于F.
如图,在平面直角坐标系中,直线y= 23x- 23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,
如图,在平面直角坐标系中,矩形OABC与反比例函数y=k/x(k≠0)图像分别交于点D,点E,且点E为线段BC的中点,梯
如图,在平面直角坐标系中,矩形ABCO的OA边在x轴上OC边在y轴上,且点B坐标为(4,3).
如图,在矩形ABCO中,AO=3,OC=4,以O为坐标原点,OC为x轴,OA为y轴建立平面直角坐标系.
如图,矩形ABCO的两边AO=3,AB=4,以顶点O为原点,OC,OA所在直线分别为x轴、y轴建立如图的平面直角坐标系,
如图,在平面直角坐标系xOy中,直径为10的⊙E交x轴于点A,B,交y轴于点C,D,且点A,B的坐标分别为A(-2,0)