求定积分∫(上限π/4,下限0)ln(1+tanx)dx,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 21:52:49
求定积分∫(上限π/4,下限0)ln(1+tanx)dx,
Let y = π/4 - x then dy = -dx
When x = 0,y = π/4,when x = π/4,y = 0
J = ∫(0,π/4) ln(1+tanx) dx
= ∫(π/4,0) ln[1+tan(π/4-y)] -dy
= ∫(0,π/4) ln[1 + (tan(π/4)-tany)/(1+tan(π/4)tany)] dy
= ∫(0,π/4) ln[1 + (1-tany)/(1+tany)] dy
= ∫(0,π/4) ln[(1+tany+1-tany)/(1+tany)] dy
= ∫(0,π/4) [ln(2) - ln(1+tany)] dy
= ln(2) * ∫(0,π/4) dy - J
2J = ln(2) * (π/4-0)
J = (π*ln2)/8
When x = 0,y = π/4,when x = π/4,y = 0
J = ∫(0,π/4) ln(1+tanx) dx
= ∫(π/4,0) ln[1+tan(π/4-y)] -dy
= ∫(0,π/4) ln[1 + (tan(π/4)-tany)/(1+tan(π/4)tany)] dy
= ∫(0,π/4) ln[1 + (1-tany)/(1+tany)] dy
= ∫(0,π/4) ln[(1+tany+1-tany)/(1+tany)] dy
= ∫(0,π/4) [ln(2) - ln(1+tany)] dy
= ln(2) * ∫(0,π/4) dy - J
2J = ln(2) * (π/4-0)
J = (π*ln2)/8
求定积分∫(上限π/4,下限0)ln(1+tanx)dx,
定积分∫上限e-1,下限0 ln(x+1)dx 怎么求?
求定积分 上限4 下限1 ∫ ln根号x dx
求定积分(下限0,上限π/4)∫(1/(1+(cosx)^2))dx
求定积分:∫ ln(1+x)/(2-x)^2dx.上限1,下限0.
求计算定积分ln(x+√(x^2+1))dx ,上限1,下限0
求解定积分∫(上限1,下限0)ln(x+1)/(2-x)^2.dx
定积分小题:∫(下限0,上限π) [(cosx)ln(1+e^cosx)]/(1+sinx)² dx
就是关于那个定积分“求定积分:∫ln(tanx)dx (o≤x≤π/2),积分是限是π/2,下限是0"的一些问题
求定积分∫1/sinxcosx dx(上限π/3,下限π/4),也如图,
求定积分∫(上限为π/2.下限为0)|1/2-sin x| dx
∫上限1,下限0(x/(1+x的4次方)dx,求定积分