作业帮 > 数学 > 作业

已知向量a=(sinx,-cosx),b=(cosx,√3cosx),函数f(x)=a*b+(√3)/2

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:01:52
已知向量a=(sinx,-cosx),b=(cosx,√3cosx),函数f(x)=a*b+(√3)/2
1,求f(x)的最小正周期,并求其图像对称中心的坐标
2,当0=
a*b=(sinx,-cosx)*(cosx,√3cosx)=sinxcosx-√3cosx^2=1/2sin2x-√3/2cos2x-√3/2=sin(2x-π/3)-√3/2
【这一步根据三角公式化简的】
f(x)=a*b+(√3)/2=sin(2x-π/3)
所以 最小正周期π
图像对称中心 只需f(x)=0 x=k/2π+π/6
当0=