一个很经典的问题有:十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:41:30
一个很经典的问题有:十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,
有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将那个重量异常的球找出来,并且知道它比其它十一个球较重还是较轻.
有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将那个重量异常的球找出来,并且知道它比其它十一个球较重还是较轻.
把球分成三组(各为四只球),把这三组乒乓球分别编号为 A组、B组、C组.首先,把A、B两组放在天平上称.会有两种可能:一:天平两边平衡,那么,不合格的坏球必在c组之中,第二步从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次.这时,又有两种可能:1·天平两边平衡.这样,坏球必在C3、C4中.这是因为,在12个乒乓球中,只有一个是不合格的坏球.只有C1、C2中有一个是坏球时,天平两边才不平衡.既然天平两边平衡了,可见,C1、C2都是合格的好球.称第三次的时候,可以从C3、C4中任意取出一个球(例如C3),同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果.这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3.2·天平两边不平衡.这样,坏球必在C1、C2中.这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡.这是称第二次.称第三次的时候,可以从C1、C2中任意取出一个球(例如C1),同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果.道理同上.以上是第一次称之后出现第一种情况的分析.
第二种情况,第一次称过后天平两边不平衡.这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中.我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻.这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中.同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中.经过这样的交换之后,每盘中各有三个球:原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3.这时,可以称第二次了.这次称后可能出现的是三种情况:1·天平两边平衡.这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中.已知A盘重于B盘.所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球.这时候,可以把B1、B4各放在天平的一端,称第三次.这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球.2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重.在这种情况下,则坏球必在未经交换的A4或B3之中.这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球.以上说明A4或B3这其中有一个是坏球.这时候,只需要取A4或B3同标准球C1比较就行了.例如,取A4放在天平的一端,取C1放在天平的另一端.这时称第三次.如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1).3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻.在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中.这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球.以上说明A2、A3、B2中有一个是坏球.这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球.把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球.根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球.如果我们现在假定出现的情况是A组轻于B组,其推理过程同上.
第二种情况,第一次称过后天平两边不平衡.这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中.我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻.这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中.同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中.经过这样的交换之后,每盘中各有三个球:原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3.这时,可以称第二次了.这次称后可能出现的是三种情况:1·天平两边平衡.这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中.已知A盘重于B盘.所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球.这时候,可以把B1、B4各放在天平的一端,称第三次.这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球.2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重.在这种情况下,则坏球必在未经交换的A4或B3之中.这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球.以上说明A4或B3这其中有一个是坏球.这时候,只需要取A4或B3同标准球C1比较就行了.例如,取A4放在天平的一端,取C1放在天平的另一端.这时称第三次.如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1).3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻.在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中.这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球.以上说明A2、A3、B2中有一个是坏球.这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球.把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球.根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球.如果我们现在假定出现的情况是A组轻于B组,其推理过程同上.
一个很经典的问题有:十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,
有十二个乒乓球形状大小相同,其中只有一个重量与其它十一个不同,怎么用一部没有砝
智力题求解:有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,怎么找出来
有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的 天秤称三次
能答几题就几题5有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将那
有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次
(5)有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称
)有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现 在要求用一部没有砝码的天秤称三
有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现 在要求用一部没有砝码的天秤称三次
12个乒乓球问题有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将那
有十二个乒乓球,读题(5)有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称
高智商问题.第三题有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部没有砝码的天秤称三次,将