如图,在四棱台ABCD-A1B1C1D1中,上下底面都是正方形,侧棱DD1⊥平面ABCD,DD1=2 求证:A1C1与A
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:31:02
如图,在四棱台ABCD-A1B1C1D1中,上下底面都是正方形,侧棱DD1⊥平面ABCD,DD1=2 求证:A1C1与AC共
如图,在四棱台ABCD-A1B1C1D1中,上下底面都是正方形,侧棱DD1⊥平面ABCD,DD1=2 求证:A1C1与AC共面,B1D1与BD共面
如图,在四棱台ABCD-A1B1C1D1中,上下底面都是正方形,侧棱DD1⊥平面ABCD,DD1=2 求证:A1C1与AC共面,B1D1与BD共面
证明:∵D1D⊥平面A1B1C1D1,D1D⊥平面ABCD.
∴D1D⊥DA,D1D⊥DC,平面A1B1C1D1∥平面ABCD.
于是C1D1∥CD,D1A1∥DA.
设E,F分别为DA,DC的中点,连接EF,A1E,C1F,
有A1E∥D1D,C1F∥D1D,DE=1,DF=1.∴A1E∥C1F,
于是A1C1∥EF.由DE=DF=1,得EF∥AC,
故A1C1∥AC,A1C1与AC共面.
过点B1作B1O⊥平面ABCD于点O,
则B1O∥=A1E,B1O∥=C1F,连接OE,OF,
于是OE∥=B1A1,OF∥=B1C1,∴OE=OF.
∵B1A1⊥A1D1,∴OE⊥AD.∵B1C1⊥C1D1,∴OF⊥CD.
所以点O在BD上,故D1B1与DB共面.
注∥=表示平行且相等
∴D1D⊥DA,D1D⊥DC,平面A1B1C1D1∥平面ABCD.
于是C1D1∥CD,D1A1∥DA.
设E,F分别为DA,DC的中点,连接EF,A1E,C1F,
有A1E∥D1D,C1F∥D1D,DE=1,DF=1.∴A1E∥C1F,
于是A1C1∥EF.由DE=DF=1,得EF∥AC,
故A1C1∥AC,A1C1与AC共面.
过点B1作B1O⊥平面ABCD于点O,
则B1O∥=A1E,B1O∥=C1F,连接OE,OF,
于是OE∥=B1A1,OF∥=B1C1,∴OE=OF.
∵B1A1⊥A1D1,∴OE⊥AD.∵B1C1⊥C1D1,∴OF⊥CD.
所以点O在BD上,故D1B1与DB共面.
注∥=表示平行且相等
如图,在四棱台ABCD-A1B1C1D1中,上下底面都是正方形,侧棱DD1⊥平面ABCD,DD1=2 求证:A1C1与A
如图,在六面体ABCD-A1B1C1D1中,四边形ABCD与A1B1C1D1均是正方形,且2A1B1=AB,DD1⊥平面
四棱台ABCD-A1B1C1D1中DD1垂直底面DD1=2底面四边形ABCD与A1B1C1D1分别为边长2和1的正方形,
(2014•湛江二模)如图,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=
如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点. 求证:直线PB1与平面PAC
如图,在长方体ABCD-A1B1C1D1中,M.N分别是AB,BC的中点,P∈DD1且D1P:PD=1:2,求证平面PA
正方体ABCD-A1B1C1D1中,P为DD1的中点,O为底面ABCD中心,求证:B1O⊥平面PAC
在正方形ABCD—A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点 1.求证:直线BD1//平面PAC
如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.求证:
如图,在正方形ABCD-A1B1C1D1中,E是棱DD1的中点,求直线BE与平面ABB1A1的角的正弦值.
如图所示,在正方形ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,q求证B1D⊥平面PAC
在正方体ABCD—A1B1C1D1中,Eshi 棱DD1的重点,求证DB1平行平面A1EC1