双曲线的左右焦点f1f2,x^2-y^2/9=1,点P在双曲线上,向量pf1*pf2=0,求向量PF1+PF2的绝对值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:39:41
双曲线的左右焦点f1f2,x^2-y^2/9=1,点P在双曲线上,向量pf1*pf2=0,求向量PF1+PF2的绝对值
X²-Y²/3²=1==>C=√[1+3²]=√10.
根据向量的平行四边形法则得:2向量PO=向量PF1+向量PF2
在RTΔPF1F2中:OP=OF1=OF2=√10.
∴|向量PF1+向量PF2|=2√10.
再问: ∴|向量PF1+向量PF2|=2√10. 请问这个是怎么得出的?
再答: 根据向量的平行四边形法则得:2向量PO=向量PF1+向量PF2 op=根号10 向量PF1+向量PF2=2向量PO=2根号10
根据向量的平行四边形法则得:2向量PO=向量PF1+向量PF2
在RTΔPF1F2中:OP=OF1=OF2=√10.
∴|向量PF1+向量PF2|=2√10.
再问: ∴|向量PF1+向量PF2|=2√10. 请问这个是怎么得出的?
再答: 根据向量的平行四边形法则得:2向量PO=向量PF1+向量PF2 op=根号10 向量PF1+向量PF2=2向量PO=2根号10
双曲线的左右焦点f1f2,x^2-y^2/9=1,点P在双曲线上,向量pf1*pf2=0,求向量PF1+PF2的绝对值
双曲线的左右焦点f1f2,x^2/16-y^2/9=1,点P在双曲线上,pf1*pf2=0,求PF1+PF2的绝对值
设F1F2分别为x^2-y^2/9=1的左右焦点,P在双曲线的右支上,且向量PF1×向量PF2=0,求向量PF1的绝对值
设F1F2是双曲线X2/4-Y2=1的两焦点,点P在双曲线上,向量PF1*PF2=0则向量PF1*PF2的长
设F1F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,P在双曲线上,若向量PF1*向量PF2=0绝对值PF1*
双曲线x^2/4-y^2/b^2=1的左右焦点为F1F2,点P在双曲线上,使|Pf1|,F1f2|,|pf2|成等差数列
双曲线x^2/9-y^2/16=1的两个焦点为F1F2,点P在双曲线上,若PF1⊥PF2,求点P的坐标
双曲线x^2/4-y^2/b^2=1的两个焦点为F1,F2,点P在双曲线上,若|PF1||F1F2||PF2|成等差数列
设双曲线x^2/a^2-y^2=1(a>0)的焦点为F1,F2,点P在双曲线上,且向量PF1*向量PF2=0求△F1PF
已知F1F2为双曲线C:X^2 -Y^2 =2的左右焦点,点P在C上,|PF1|=|2PF2|则角COSF1PF2=
设F1F2是双曲线x^2/4-y^2=1的两个焦点,P在双曲线上,当△F1PF2的面积为1时,向量PF1向量PF2等于多
已知双曲线x^2-y^2=1,F1,F2分别为焦点.点p为双曲线上的一点,PF1垂直于PF2,则PF1+PF2=