数列an的前n项和为Sn,Sn+an=-1/2n2-3/2n+1(n属于正自然数).设bn=an+n,证明数列bn是等比
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:19:55
数列an的前n项和为Sn,Sn+an=-1/2n2-3/2n+1(n属于正自然数).设bn=an+n,证明数列bn是等比数列
求数列{nbn}的前n项和Tn
求数列{nbn}的前n项和Tn
Sn+an=-(1/2)n^2-(3/2)n+1
n=1
a1=-1/2
2Sn-S(n-1) = -(1/2)n^2-(3/2)n+1
2(Sn + (1/2)n^2 +(1/2)n -1) = S(n-1) +(1/2)(n-1)^2+(1/2)(n-1) -1
[(Sn + (1/2)n^2 +(1/2)n -1)]/[S(n-1) +(1/2)(n-1)^2+(1/2)(n-1) -1]=1/2
[(Sn + (1/2)n^2 +(1/2)n -1)]/[S1 +(1/2)+(1/2) -1]=(1/2)^(n-1)
Sn + (1/2)n^2 +(1/2)n -1 = -(1/2)^n
Sn=1-n/2 -n^2/2 - (1/2)^n
an = Sn -S(n-1)
= -n +(1/2)^n
an +n = (1/2)^n
bn =an+n 是等比数列
nbn = n(1/2)^n
Tn =1b1+2b2+...+nbn
consider
1+x+x^2+..+x^n = (x^(n+1)- 1)/(x-1)
1+2x+..+nx^(n-1) =[(x^(n+1)- 1)/(x-1)]'
= [nx^(n+1) - (n+1)x^n + 1]/(x-1)^2
put x=1/2
summation(i:1->n) i.(1/2)^(i-1)
= 4(n.(1/2)^(n+1) - (n+1).(1/2)^n + 1)
= 4[1- (n+2).(1/2)^(n+1)]
Tn =1b1+2b2+...+nbn
= (1/2)(summation(i:1->n) i.(1/2)^(i-1))
=2[1- (n+2).(1/2)^(n+1)]
n=1
a1=-1/2
2Sn-S(n-1) = -(1/2)n^2-(3/2)n+1
2(Sn + (1/2)n^2 +(1/2)n -1) = S(n-1) +(1/2)(n-1)^2+(1/2)(n-1) -1
[(Sn + (1/2)n^2 +(1/2)n -1)]/[S(n-1) +(1/2)(n-1)^2+(1/2)(n-1) -1]=1/2
[(Sn + (1/2)n^2 +(1/2)n -1)]/[S1 +(1/2)+(1/2) -1]=(1/2)^(n-1)
Sn + (1/2)n^2 +(1/2)n -1 = -(1/2)^n
Sn=1-n/2 -n^2/2 - (1/2)^n
an = Sn -S(n-1)
= -n +(1/2)^n
an +n = (1/2)^n
bn =an+n 是等比数列
nbn = n(1/2)^n
Tn =1b1+2b2+...+nbn
consider
1+x+x^2+..+x^n = (x^(n+1)- 1)/(x-1)
1+2x+..+nx^(n-1) =[(x^(n+1)- 1)/(x-1)]'
= [nx^(n+1) - (n+1)x^n + 1]/(x-1)^2
put x=1/2
summation(i:1->n) i.(1/2)^(i-1)
= 4(n.(1/2)^(n+1) - (n+1).(1/2)^n + 1)
= 4[1- (n+2).(1/2)^(n+1)]
Tn =1b1+2b2+...+nbn
= (1/2)(summation(i:1->n) i.(1/2)^(i-1))
=2[1- (n+2).(1/2)^(n+1)]
数列an的前n项和为Sn,Sn+an=-1/2n2-3/2n+1(n属于正自然数).设bn=an+n,证明数列bn是等比
设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2 (1)设bn=an+1-2an,证明数列{bn}是等比数
数列{an}的前n项的和Sn=n2-10n(n属于N*),数列{bn}满足bn=(an+1)/an(n属于N*),(1)
设等差数列{an}的前 n项和为Sn,且 Sn=(an+1)^/2(n属于N*)若bn=(-1)nSn,求数列{bn}的
数列an的前n项和为Sn=2^n-1,设bn满足bn=an+1/an,判断并证明bn 的单调性
设数列{an}的前n项和为sn,若对于任意的正整数n都有sn=2an-3n.(1)设bn=an+3,证明:数列{bn}是
数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn
设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)
设数列{an}满足a1=1,an+1=3an,数列{bn}的前n项和Sn=n2+2n+1.
设数列{an}的前n项和为Sn,Sn=n-an,n属于自然数.求:证明:数列{an-1}是等比数列
设数列{An}的前n项和为Sn,且满足Sn=2An-3n,n=1,2,3……(1)设Bn=An+3,求证:数列{Bn}是
急...设Sn为数列{an}的前n项的和,且Sn=2分之3(an-1)(n属于N正),数列{bn}的通项公式bn=4n+