作业帮 > 数学 > 作业

已知抛物线y^2=4X上有三点,A(X1,Y1),B(X2,Y2),C(X3,Y3),斜率为Kab,Kac,Kbc.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 14:31:09
已知抛物线y^2=4X上有三点,A(X1,Y1),B(X2,Y2),C(X3,Y3),斜率为Kab,Kac,Kbc.
当X1取最小值时,求1/Kab+1/Kac+1/Kbc的值
答:抛物线y^2=4x中,x>=0,所以X1取最小值0,Y1=0
点A(0,0),B(X2,Y2),C(X3,Y3)
Kab=Y2/X2=4/Y2
Kac=Y3/X3=4/Y3
Kbc=(Y3-Y2)/(X3-X2)
所以:
1/Kab+1/Kac+1/Kbc
=Y2/4+Y3/4+(X3-X2)/(Y3-Y2)
=(Y2+Y3)/4+(Y3^2/4-Y2^2/4)/(Y3-Y2)
=(Y2+Y3)/4+(Y2+Y3)/4
=(Y2+Y3)/2