作业帮 > 综合 > 作业

2011江西省初中数学竞赛初赛试题及答案

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/05 16:30:23
2011江西省初中数学竞赛初赛试题及答案
希望大家发给我的邮箱kzq123321@vip.qq.com必有百分感谢
是这个吗 一. 选择题(每小题 分,共 分) 、设 为质数,并且 和 也都是质数,若记 ,则在以下情况中,必定成立的是(    ). 、 都是质数;           、 都是合数;  、 一个是质数,一个是合数;   、对不同的 ,以上各情况皆可能出现.答案: .当 时, 与 皆为质数,而 , 都是质数; 当质数 异于 时,则 被 除余 ,设 ,于是 , ,它们都不是质数,与条件矛盾! 、化简 的结果是(   ). 、 ;     、 ;      、 ;    、 .答案: . ; ,因此,原式 . 、 的末位数字是(    ). 、 ;   、 ;   、 ;    、 .答案:  的末位数字按 的顺序循环,而 的末位数字按 的顺序循环,因为 是 形状的数,所以 的末位数字是 ,而 的末位数字是 ,所以 的末位数字是 . 、方程 的解的情况是(    ). 、无解;   、恰有一解;  、恰有两个解;  、有无穷多个解.答案: .将方程变形为  … ①,分三种情况考虑,若  ,则①成为  ,即 ,得 ;若  ,则①成为  ,即 ,得 ;若  ,即 时,则①成为  ,即 ,这是一个恒等式,满足 的任何 都是方程的解,结合以上讨论,可知,方程的解是满足  的一切实数,即有无穷多个解. 、正六边形被三组平行线划分成小的正三角形,则图中全体正三角形的个数是(   ). 、 ;   、 ;   、 ;    、 .答案: .分类计算:设正六边形的边长为 ,那么,边长为 的正三角形有 个,边长为 的正三角形有 个,边长为 的正三角形有 个,共计 个. 、设 为整数,并且一元二次方程 有等根 ,而一元二次方程 有等根 ;那么,以 为根的整系数一元二次方程是(    ). 、 ;           、 ;  、 ;            、 .答案: .由两个方程的判别式皆为 ,有 ,以及 ,即: 以及 ,消去 得, ,其整根为 ,于是 ;因此两个方程分别是: 及 ,前一方程的等根为 ,后一方程的等根为 ,易得,以 为根的整系数一元二次方程是 .二、 填空题(每小题 分,共 分) 、直角三角形 的三条边长分别为 ,若将其内切圆挖去,则剩下部分的面积等于          .答案: . 的面积为 ,又设其内切圆的半径为 ,则由 ,所以 ,因此内切圆面积为 ,故剩下部分的面积为 . 、若 ,则 (       ).答案:( ). ,由 , , ,解得, ;因此 . 、如图,正方形 的边长为 , 是 边外的一点,满足: ‖ , ,则          .答案: .解:  ,设 ,则 , , ,由 ∽ ,得 ,即有 ,所以 , ,则 ,再由 ,即 ,所以 . 、绕圆周填写了十二个正整数,其中每个数取自 之中(每一个数都可以多次出现在圆周上),若圆周上任何三个相邻位置上的数之和都是 的倍数,用 表示圆周上所有十二个数的和,那么数 所有可能的取值情况有         种.答案: 种.对于圆周上相邻的三个数 , 可以是 ,或 ,或 ,例如,当三数和为 时, 可以取 或 或 ;又对于圆周上任意相邻的四数,若顺次为 ,由于 和 都是 的倍数,那么必有 ,于是 与 或者相等,或者相差 ;又在圆周上, 与 可互换, 与 可互换;现将圆周分成四段,每段三个数的和皆可以是 ,或 ,或 ,因此四段的总和可以取到 中的任一个值,总共九种情况. (其中的一种填法是:先在圆周上顺次填出十二个数: ,其和为 ,然后每次将一个 改成 ,或者将一个 改成 ,每一次操作都使得总和增加 ,而这样的操作可以进行八次).第 二 试一、( 分)试确定,对于怎样的正整数 ,方程 有正整数解?并求出方程的所有正整数解.将方程改写为  ,                      …………5’由于 表成两个正整数的平方和,只有两种不同的形式:  ……10’所以,   … ①,或   … ②   … ③,或   … ④                         …………15’由①得 (当 或 );由②得 (当 或 );由③得  (当  或 ); 或  (当 或 );由④得 (当 );或  (当 或 ).               …………20’二、( 分)锐角三角形 的外心为 ,外接圆半径为 ,延长 ,分别与对边 交于 ;证明: .证: 延长 交 于 ,由于 共点 ,       …………5’则  … ①                …………10’而 ,…………15’同理有, ,                                    …………20’代入①得,  … ②所以  .                                     …………25’三、( 分)设 为正整数,证明:1、如果 是两个连续正整数的乘积,那么 也是两个连续正整数的乘积;2、如果 是两个连续正整数的乘积,那么 也是两个连续正整数的乘积.证明:1、如果 是两个连续正整数的乘积,设 ,其中 为正整数,……5’则 为两个连续正整数的乘积;                                                              …………10’2、如果 是两个连续正整数的乘积,设 ,其中 为正整数,则  … ①                        …………15’于是, 是 的倍数,且 是奇数;设 ,由①得,  … ②                                …………20’因此, ,即 ,它是两个连续正整数的乘积.……25’
再问: 有些看不到额 能不能发图片或告诉我你怎么看到的?
再答: 我发你邮箱里去了 请采纳@! 我是在e网通里找到的 下载需要积分