作业帮 > 数学 > 作业

已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:28:56
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1
(1)求{an}、{bn}的通项公式;
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn
(3)试比较Tn与anSn的大小,并说明理由.
(1)∵{an}是等差数列,且a3=5,a7=13,设公差为d.


a1+2d=5
a1+6d=13,解得

a1=1
d=2
∴an=1+2(n-1)=2n-1(n∈N*)(2分)
在{bn}中,∵Sn=2bn-1
当n=1时,b1=2b1-1,∴b1=1
当n≥2时,由Sn=2bn-1及Sn-1=2bn-1-1可得bn=2bn-2bn-1,∴bn=2bn-1
∴{bn}是首项为1公比为2的等比数列
∴bn=2n-1(n∈N*)(4分)
(2)cn=anbn=(2n-1)•2n-1
Tn=1+3•2+5•22++(2n-1)•2n-1
2Tn=1•2+3•22+5•23++(2n-3)•2n-1+(2n-1)•2n
①-②得-Tn=1+2•2+2•22++2•2n-1-(2n-1)•2n
=1+2•
2(1−2n−1)
1−2−(2n−1)•2n
=1+4(2n-1-1)-(2n-1)•2n
=-3-(2n-3)•2n
∴Tn=(2n-3)•2n+3(n∈N*)(8分)
(3)Tn-anSn=(2n-3)•2n+3-(2n-1)(2n-1)
=(2n-3)•2n+3-(2n-1)•2n+2n-1
=2n+2-2•2n
=2(n+1-2n)(9分)
令f(x)=x+1-2x(x≥1),则f'(x)=1-2xln2
∵f'(x)在[1,+∞)是减函数,又f'(1)=1-2ln2=1-ln4<0
∴x≥1时,f'(x)<0
∴x≥1时,f(x)是减函数.
又f(1)=1+1-2=0
∴x≥1时,f(x)≤0
∴x≥1时,x+1-2x≤0(13分)
∴n∈N*时,n+1-2n≤0
∴n∈N*时,Tn≤anSn(14分)