已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:28:56
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1
(1)求{an}、{bn}的通项公式;
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn;
(3)试比较Tn与anSn的大小,并说明理由.
(1)求{an}、{bn}的通项公式;
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn;
(3)试比较Tn与anSn的大小,并说明理由.
(1)∵{an}是等差数列,且a3=5,a7=13,设公差为d.
∴
a1+2d=5
a1+6d=13,解得
a1=1
d=2
∴an=1+2(n-1)=2n-1(n∈N*)(2分)
在{bn}中,∵Sn=2bn-1
当n=1时,b1=2b1-1,∴b1=1
当n≥2时,由Sn=2bn-1及Sn-1=2bn-1-1可得bn=2bn-2bn-1,∴bn=2bn-1
∴{bn}是首项为1公比为2的等比数列
∴bn=2n-1(n∈N*)(4分)
(2)cn=anbn=(2n-1)•2n-1
Tn=1+3•2+5•22++(2n-1)•2n-1①
2Tn=1•2+3•22+5•23++(2n-3)•2n-1+(2n-1)•2n②
①-②得-Tn=1+2•2+2•22++2•2n-1-(2n-1)•2n
=1+2•
2(1−2n−1)
1−2−(2n−1)•2n
=1+4(2n-1-1)-(2n-1)•2n
=-3-(2n-3)•2n
∴Tn=(2n-3)•2n+3(n∈N*)(8分)
(3)Tn-anSn=(2n-3)•2n+3-(2n-1)(2n-1)
=(2n-3)•2n+3-(2n-1)•2n+2n-1
=2n+2-2•2n
=2(n+1-2n)(9分)
令f(x)=x+1-2x(x≥1),则f'(x)=1-2xln2
∵f'(x)在[1,+∞)是减函数,又f'(1)=1-2ln2=1-ln4<0
∴x≥1时,f'(x)<0
∴x≥1时,f(x)是减函数.
又f(1)=1+1-2=0
∴x≥1时,f(x)≤0
∴x≥1时,x+1-2x≤0(13分)
∴n∈N*时,n+1-2n≤0
∴n∈N*时,Tn≤anSn(14分)
∴
a1+2d=5
a1+6d=13,解得
a1=1
d=2
∴an=1+2(n-1)=2n-1(n∈N*)(2分)
在{bn}中,∵Sn=2bn-1
当n=1时,b1=2b1-1,∴b1=1
当n≥2时,由Sn=2bn-1及Sn-1=2bn-1-1可得bn=2bn-2bn-1,∴bn=2bn-1
∴{bn}是首项为1公比为2的等比数列
∴bn=2n-1(n∈N*)(4分)
(2)cn=anbn=(2n-1)•2n-1
Tn=1+3•2+5•22++(2n-1)•2n-1①
2Tn=1•2+3•22+5•23++(2n-3)•2n-1+(2n-1)•2n②
①-②得-Tn=1+2•2+2•22++2•2n-1-(2n-1)•2n
=1+2•
2(1−2n−1)
1−2−(2n−1)•2n
=1+4(2n-1-1)-(2n-1)•2n
=-3-(2n-3)•2n
∴Tn=(2n-3)•2n+3(n∈N*)(8分)
(3)Tn-anSn=(2n-3)•2n+3-(2n-1)(2n-1)
=(2n-3)•2n+3-(2n-1)•2n+2n-1
=2n+2-2•2n
=2(n+1-2n)(9分)
令f(x)=x+1-2x(x≥1),则f'(x)=1-2xln2
∵f'(x)在[1,+∞)是减函数,又f'(1)=1-2ln2=1-ln4<0
∴x≥1时,f'(x)<0
∴x≥1时,f(x)是减函数.
又f(1)=1+1-2=0
∴x≥1时,f(x)≤0
∴x≥1时,x+1-2x≤0(13分)
∴n∈N*时,n+1-2n≤0
∴n∈N*时,Tn≤anSn(14分)
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1
设数列{Bn}的前n项和为Sn,且Bn=2-2Sn;数列{An}为等差数列,且A5=14,A7=20.
设数列{bn}的前n项和为sn,且bn=2-2sn;数列{an}为等差数列,且a5=14,a7=20求
设数列{bn}的前n项和为Sn,且bn=2-2Sn,数列{an}为等差数列,且a5=14,a7=20
设数列Bn的前n项和为Sn,且Bn=2-2Sn.数列An为等差数列,且A5=10,A7=14.(1)求数列An、{bn}
设数列{bn}的前n项和为Sn,且bn=2-2Sn,数列{an}为等差数列,且a5=14,a7=20 (1)求数列{bn
设数列{bn}的前n项和为Sn,且bn=2-2s.数列{an}为等差数列,且a5=14,a7=20.
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且Sn=2n+1−2.
设数列bn的前n项和为Sn.且bn=2-2Sn.数列an为等差数列,a5=14.a7=20.求数列bn通项公式.2,若c
设数列{bn}的前n项和为Sn,且Sn=1-bn/2;数列{an}为等差数列,且a6=17,a8=23,
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.数列{bn}是等比数列,b3=a2+a3,b2b5=1
设数列Bn的前n项和为Sn.且Bn=2-2Sn,数列An为等差数列.a5=14 a7=20,求Bn的通项公式