作业帮 > 数学 > 作业

如图,在正方形ABCD中,E在BC上,BE等于2,EC等于1,P在BD上,求PE加PC的长度之和的最小值.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:41:16
如图,在正方形ABCD中,E在BC上,BE等于2,EC等于1,P在BD上,求PE加PC的长度之和的最小值.
因为A点是C点关于BD的对称点
所以AP=CP.
所以PE+PC=PE+PA
因为PE+PA≥AE
所以PE+PC的最小值为AE的长,
因为AB=BC=BE+EC=2+1=3
在直角三角形ABE中,
AE=(AB²+BE²)的算数平方根=(2²+3²)的算数平方根=√13