作业帮 > 数学 > 作业

(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 12:32:52
(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,且x12+x22=10.
(1)求此二次函数的解析式;
(2)是否存在过点D(0,-
5
2
(1)因为x12+x22=10,
所以(x1+x22-2x1x2=10,根据根与系数的关系,(m+1)2-2m=10,
所以m=3,m=-3,
又因为点C在y轴的正半轴上,
∴m=3,
∴所求抛物线的解析式为:y=x2-4x+3;
(2)过点D(0,-
5
2)的直线与抛物线交于M(XM,YM)、N(XN,YN)两点,与x轴交于点E,使得M、N两点关于点E对称.
设直线MN的解析式为:y=kx-
5
2,
则有:YM+YN=0,(6分)


y=x2−4x+3
y=kx−
5
2,
x2-4x+3=kx-
5
2,
移项后合并同类项得x2-(k+4)x+
11
2=0,
∴xM+xN=4+k.
∴yM+yN=kxM-
5
2+kxN-
5
2=k(xM+xN)-5=0,
∴yM+yN=k(xM+xN)=5,
即k(k+4)-5=0,
∴k=1或k=-5.
当k=-5时,方程x2-(k+4)x+
11
2=0的判别式△<0,直线MN与抛物线无交点,
∴k=1,
∴直线MN的解析式为y=x-
5
2,
∴此时直线过一、三、四象限,与抛物线有交点;
∴存在过点D(0,−
5
2)的直线与抛物线交于M,N两点,与x轴交于点E.使得M、N两点关于点E对称.