一类中值定理证明题:|f(x)|≤A,|f''(x)|≤B→|f'(x)|≤?|f(x)|≤A,|f''(x)|≤B→|
一类中值定理证明题:|f(x)|≤A,|f''(x)|≤B→|f'(x)|≤?|f(x)|≤A,|f''(x)|≤B→|
【中值定理证明题】设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)f(b)>0,f(a)f((a+b)/
设f(x)定义在[0,c],f'(x)存在且单调减少、f(0)=0用拉格朗日中值定理证明对于0≤a<b≤a+b<c恒有f
微分中值定理证明题设f(x),g(x)在[a,b]上可导,并且g’(x) ≠0,证明存在c ∈(a,b)使得 (f(a)
柯西中值定理证明:f(a)-f(m)/g(m)-g(b) =f'(m)/g'(m) f(x),g(x)满足在区间a,b连
设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在
微分中值定理问题已知f(x)于[a,b]上二阶可导,A(a,f(a)),B(b,f(b)).线段AB交y=f(x)曲线于
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
高数中值定理 f(x)在[a,b]上可导,在(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)f'(b)>0,试
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
中值定理的证明题 f(x)在(a,b)内可导,f(a)=f(b)=0.证明:对任意实数m,有ξ,使f`(ξ)/ f(ξ)
对于定义域是x∈R的任意奇函数f(x)都有 A f(x)-f(-x)>0 B f(x)-f(-x)≤ 0 C f(x)f