作业帮 > 数学 > 作业

f (x) = ∫[a sin(ln x) + b cos(ln x)]dx

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:41:51
f (x) = ∫[a sin(ln x) + b cos(ln x)]dx
设lnx=y则x=e^y
asin(lnx)dx积分=asinyd(e^y)=asiny*e^y-ae^yd(siny)=asiny*e^y-acosyd(e^y)
asiny*e^y-acosy*e^y+ae^yd(cosy)=a*e^y(siny-cosy)-asiny*e^ydy
2asiny*d(e^y)=a*e^y(siny-cosy)
asiny=a*e^y(siny-cosy)/2
asin(lnx)dx积分=a*x{sin(lnx)-cos(lnx)}/2
同理bcos(lnx)dx积分=b*x{sin(lnx)+cos(lnx)}/2
f(x)=[ax{sin(lnx)-cos(lnx)}+bx{sin(lnx)+cos(lnx)}]/2