f (x) = ∫[a sin(ln x) + b cos(ln x)]dx
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:41:51
f (x) = ∫[a sin(ln x) + b cos(ln x)]dx
设lnx=y则x=e^y
asin(lnx)dx积分=asinyd(e^y)=asiny*e^y-ae^yd(siny)=asiny*e^y-acosyd(e^y)
asiny*e^y-acosy*e^y+ae^yd(cosy)=a*e^y(siny-cosy)-asiny*e^ydy
2asiny*d(e^y)=a*e^y(siny-cosy)
asiny=a*e^y(siny-cosy)/2
asin(lnx)dx积分=a*x{sin(lnx)-cos(lnx)}/2
同理bcos(lnx)dx积分=b*x{sin(lnx)+cos(lnx)}/2
f(x)=[ax{sin(lnx)-cos(lnx)}+bx{sin(lnx)+cos(lnx)}]/2
asin(lnx)dx积分=asinyd(e^y)=asiny*e^y-ae^yd(siny)=asiny*e^y-acosyd(e^y)
asiny*e^y-acosy*e^y+ae^yd(cosy)=a*e^y(siny-cosy)-asiny*e^ydy
2asiny*d(e^y)=a*e^y(siny-cosy)
asiny=a*e^y(siny-cosy)/2
asin(lnx)dx积分=a*x{sin(lnx)-cos(lnx)}/2
同理bcos(lnx)dx积分=b*x{sin(lnx)+cos(lnx)}/2
f(x)=[ax{sin(lnx)-cos(lnx)}+bx{sin(lnx)+cos(lnx)}]/2
f (x) = ∫[a sin(ln x) + b cos(ln x)]dx
∫f(x)dx=ln[sin(3x+1)]+C.求f(x)
求不定积分:∫ cos(ln x) dx
求不定积分 ∫ sin(ln x) dx
积分练习题 ∫tan(x)dx 定积分在0到1/4π ∫(cos(x)ln(x)-sin(x)1/x)/ln^2 (x)
求积分∫a^ln(x)dx
大学数学选择题与连续函数f(x)=lnx+积分1到e f(x)dx-f'(1)等价的函数是A:e^ln(lnx)B:ln
∫xf(x)dx=ln|x|+c,则∫f(x)dx=
∫ln(cos(1/x)+sin(1/x))dx的收敛性(x从1到正无穷)
∫ln(2x)dx=
∫ln²x dx=
求∫cos(ln(1/(1-x)))dx