33.14、已知P是抛物线y∧2=2x上的一个动点,过P作圆(x-3) ∧2+y∧2=1的切线,切点分别为M、N,...
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 16:37:00
33.14、已知P是抛物线y∧2=2x上的一个动点,过P作圆(x-3) ∧2+y∧2=1的切线,切点分别为M、N,...
33.14、已知P是抛物线y∧2=2x上的一个动点,过P作圆(x-3) ∧2+y∧2=1的切线,切点分别为M、N,则IMNI的最小值是__________.4√5/5
33.14、已知P是抛物线y∧2=2x上的一个动点,过P作圆(x-3) ∧2+y∧2=1的切线,切点分别为M、N,则IMNI的最小值是__________.4√5/5
设抛物线y^2=2x上的动点为P(a、b),则b^2=2a
圆(x-3)^2+y^2=1 ,圆心为C(3,0) ,半径为r=1
连接PC交MN于点E
将圆的方程变为:x^2+y^2-6x+8=0
则点P到圆C的切线长为|PM|=|PN|=√(a^2+b^2-6a+8)
=√(a^2+2a-6a+8)
=√(a^2-4a+8)
|PC|^2=|pm|^2+|CM|^2=a^2-4a+8+1=a^2-4a+9
由平面射影定理知:|CM|^2=|PC|×|CE|
即1^2=[ √(a^2-4a+9)]×|CE|
∴|CE|^2=1/(a^2-4a+9)
|ME|^2=|CM|^2-|CE|^2=1-1/( a^2-4a+9) (a≥0)
∵a^2-4a+9=(a-2)^2+5≥5
∴|ME|^2 ≥4/5
∴|ME|≥2/√5
|MN|=2|ME|≥(4√5)/5
|MN|的最小值是(4√5)/5
圆(x-3)^2+y^2=1 ,圆心为C(3,0) ,半径为r=1
连接PC交MN于点E
将圆的方程变为:x^2+y^2-6x+8=0
则点P到圆C的切线长为|PM|=|PN|=√(a^2+b^2-6a+8)
=√(a^2+2a-6a+8)
=√(a^2-4a+8)
|PC|^2=|pm|^2+|CM|^2=a^2-4a+8+1=a^2-4a+9
由平面射影定理知:|CM|^2=|PC|×|CE|
即1^2=[ √(a^2-4a+9)]×|CE|
∴|CE|^2=1/(a^2-4a+9)
|ME|^2=|CM|^2-|CE|^2=1-1/( a^2-4a+9) (a≥0)
∵a^2-4a+9=(a-2)^2+5≥5
∴|ME|^2 ≥4/5
∴|ME|≥2/√5
|MN|=2|ME|≥(4√5)/5
|MN|的最小值是(4√5)/5
已知P是抛物线y²=2x上的一个动点,过点P作圆(x-3)+y²=1的切线,切点分别为M,N,则|M
设p为抛物线y^2=2px上的动点,过点p作圆C (x-2p)^2+y^2=p^2的两条切线,切点分别为A和B,求四边形
已知点P(3,6)和圆C:(x-1)^2+(y-2)^2=r^2,其中r是变量,过P作圆C的两条切线,切点分别为M,N,
已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA,PB,切点分别为A,B.10
已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.
已知圆M:x^2+(y-4)^2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA,PB,切点
点p是抛物线C1:x^2=2py上的动点,过点p作圆c2:x^2+(Y-3)=1的两条切线交y轴于A,B两点,已知定点Q
已知圆M:x2+(y-4)2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA、PB,切点为A
已知圆M:X2+(Y-2)2=1,直线L:X-2Y=0,点P在直线上,过点P作圆M的切线PA、PB,切点为A
已知P为直线4x-3y+3=0上的动点,过P作圆C:x^2+y^2-2x+2y+1=0的两条切线PA和PB,切点 分别为
已知点M,N的坐标分别是(0,1),(0,-1),点P是抛物线y=1/4x^2上的一个动点.⑴求证:以点P为圆心,P
已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点