为什麼实对称矩阵一定可以对角化?或者证明一下实对称矩阵的n个特徵值一定有n个线性无关的特徵向量?
[线性代数]有n个线性无关的特征向量的n阶矩阵,是否一定可以相似对角化
在证明是否可以矩阵对角化过程中,利用定理n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量
n阶可对角化矩阵的线性无关特征向量的个数一定是n么
n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量,但同一特征值所对应的特征向量就是无穷个,
关于矩阵的对角化问题我想问的就是对于对称阵必然存在n个线性无关的特征向量,并且还是正交阵.那么如果我求出n个线性无关的特
实对称矩阵为什么一定可以对角化?
设A为n阶矩阵,且有n个正交的特征向量,证明:A为实对称矩阵
关于矩阵对角化的问题矩阵对角化的条件就是矩阵A存在n个线性无关的特征向量,如果A有的特征值有重根的话,那么重根对应的向量
n阶实对称矩阵A满足A的100次方等于0,下列选项中不正确的是:A.A一定有三个线性无关的特征向量
n阶实对称,非奇异矩阵一定具有n个不同的特征值吗?除了对角矩阵且对角线元素有相同的矩阵外
线性代数任意n-1个向量都线性无关 是否能推出n个向量都线性无关,若推不出,为什么矩阵相似对角化的时候 若特征值a对应特
B是由n个n维线性无关的向量构成的向量组,A是n阶矩阵,那么r (AB) 一定等于 r(A)吗