中学数学竞赛题三角形ABC中的一点P,将P点分别以三边AB,AC和CB的中点为中心做反射,得到点Pc,Pb,Pa.(注意
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:37:37
中学数学竞赛题
三角形ABC中的一点P,将P点分别以三边AB,AC和CB的中点为中心做反射,得到点Pc,Pb,Pa.(注意次序,Pc与C相对)
证明:Pa和A的连线,Pb和B的连线,Pc和C的连线交于一点
三角形ABC中的一点P,将P点分别以三边AB,AC和CB的中点为中心做反射,得到点Pc,Pb,Pa.(注意次序,Pc与C相对)
证明:Pa和A的连线,Pb和B的连线,Pc和C的连线交于一点
连结AP,BP,CP,APa,BPb,CPc
显然四边形BPCPa是平行四边形
BP=CPa,CP=BPa,∠BCP=∠CBPa,∠CBP=∠BCPa
根据正弦定理
BPa/sin∠BAPa=APa/sin(∠ABC+∠CBPa)
CPa/sin∠CAPa=APa/sin(∠ACB+∠BCPa)
==>sin∠BAPa/sin∠CAPa
=CPsin(∠ABC+∠CBPa)/BPsin(∠ACB+∠BCPa)
=CPsin(∠ABC+∠BCP)/BPsin(∠ACB+∠CBP)同理
sin∠CBPb/sin∠ABPb
=APsin(∠ACB+∠CAP)/CPsin(∠BAC+∠ACP)
sin∠ACPc/sin∠BCPc
=BPsin(∠BAC+∠ABP)/APsin(∠ABC+∠BAP)
注意到∠ABC+∠BCP+∠BAC+∠ACP
=∠BCA+∠CAP+∠CBA+∠CBA
=∠BCA+∠CBP+∠BAC+∠ABP=π,代入得
(sin∠BAPa/sin∠CAPa)*(sin∠CBPb/sin∠ABPb)*(sin∠ACPc/sin∠BCPc)=1
根据角元ceva逆定理知APa,BPb,CPc共点
显然四边形BPCPa是平行四边形
BP=CPa,CP=BPa,∠BCP=∠CBPa,∠CBP=∠BCPa
根据正弦定理
BPa/sin∠BAPa=APa/sin(∠ABC+∠CBPa)
CPa/sin∠CAPa=APa/sin(∠ACB+∠BCPa)
==>sin∠BAPa/sin∠CAPa
=CPsin(∠ABC+∠CBPa)/BPsin(∠ACB+∠BCPa)
=CPsin(∠ABC+∠BCP)/BPsin(∠ACB+∠CBP)同理
sin∠CBPb/sin∠ABPb
=APsin(∠ACB+∠CAP)/CPsin(∠BAC+∠ACP)
sin∠ACPc/sin∠BCPc
=BPsin(∠BAC+∠ABP)/APsin(∠ABC+∠BAP)
注意到∠ABC+∠BCP+∠BAC+∠ACP
=∠BCA+∠CAP+∠CBA+∠CBA
=∠BCA+∠CBP+∠BAC+∠ABP=π,代入得
(sin∠BAPa/sin∠CAPa)*(sin∠CBPb/sin∠ABPb)*(sin∠ACPc/sin∠BCPc)=1
根据角元ceva逆定理知APa,BPb,CPc共点
点P是三角形ABC中的一点,请说明AB+AC大于PB+PC.
已知,如图,P是三角形ABC内一点,点D,E,F,G分别是PB,PC,AC,AB上的中点,求证四边形DEFG是平行四边形
已知,如图,P是三角形ABC内一点,点D,E,F,G分别是PB,PC,AC,AB上的中点,求证四边形DEFG是矩形
相似三角形在图中的三角形ABC内任取一点P,连接PA,PB,PC,分别取PA,PB,PC的中点A',B',C',连接A'
已知P为边长为2的等边三角形中任意一点 连接PA PB PC 过P点分别做三边的垂线 求PD+PE+PF
已知P为三角形ABC外一点,PA,PB,PC两两垂直,PA=PB=PC=a,求点P到面ABC的距离
P为三角形ABC外一点,PA PB PC两两垂直,PA=PB=PC=a,求点P到平面ABC的距离
如果,P是三角形ABC内的一点,且PA=6,PB=8,PC=10.若将三角形PAC绕点A逆时针后,得到三角形P‘AB.
如图,P是正三角形ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60度得到线段AP1,
P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将三角形PAC绕点A逆时针旋转后,得到△P'AB.(1)求点
点P是正方形ABCD内一点,连接PA,PB,PC,将三角形PAB绕点B顺时针旋转90度到三角形P'CB的位置
如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将三角形PAC绕点A逆时针旋转后得到三角形P'AB